Volume 2: Emissions Control Systems; Instrumentation, Controls, and Hybrids; Numerical Simulation; Engine Design and Mechanical Development
Latest Publications


TOTAL DOCUMENTS

51
(FIVE YEARS 0)

H-INDEX

4
(FIVE YEARS 0)

Published By American Society Of Mechanical Engineers

9780791857281

Author(s):  
Christopher R. Stoos ◽  
Alexander Guliaeff

This paper describes the development, testing, and application of a low emissions upgrade kit for 1.5 MW EMD GP20D locomotives. Low emissions development focused on changes to fuel injection timing combined with the application of crank case ventilation system (CCV) and catalyzed diesel particulate filters (DPF). Composed of a porous cordierite ceramic material, the diesel particulate filters are specifically designed for entrapment of diesel particulates while allowing exhaust gases to flow through. Furthermore, the filters are coated with a proprietary catalyzed washcoat that promotes the oxidation of soot within the exhaust gas temperature range observed under normal engine operation. In addition to the low temperature oxidation of soot, the catalyzed filter also reduces carbon monoxide and unburned hydrocarbons. The test locomotive used for this development, which is owned by CIT Rail, was powered by a recently rebuilt Caterpillar 3516B engine with a rated power of 1.5 MW (2,000 HP). Baseline exhaust emission testing was performed, followed by low emissions retrofit development. In combination with the CCV and new fuel injection calibrations, the DPF system netted significant emissions reductions. The result of the final low emissions upgrade kit was an EPA Tier 1+ certification, with emissions levels that were below EPA Tier 3 locomotive switch cycle standards for oxides of nitrogen (NOx) and below EPA Tier 4 switch cycle standards for hydrocarbons (HC), carbon monoxide (CO), particulate matter (PM), and smoke.


Author(s):  
Sungjun Yoon ◽  
Hongsuk Kim ◽  
Daesik Kim ◽  
Sungwook Park

Stringent emission regulations (e.g., Euro-6) force automotive manufacturers to equip DPF (diesel particulate filter) on diesel cars. Generally, post injection is used as a method to regenerate DPF. However, it is known that post injection deteriorates specific fuel consumption and causes oil dilution for some operating conditions. Thus, an injection strategy for regeneration becomes one of key technologies for diesel powertrain equipped with a DPF. This paper presents correlations between fuel injection strategy and exhaust gas temperature for DPF regeneration. Experimental apparatus consists of a single cylinder diesel engine, a DC dynamometer, an emission test bench, and an engine control system. In the present study, post injection timing covers from 40 deg aTDC to 110 deg aTDC and double post injection was considered. In addition, effects of injection pressures were investigated. The engine load was varied from low-load to mid-load and fuel amount of post injection was increased up to 10mg/stk. Oil dilution during fuel injection and combustion processes were estimated by diesel loss measured by comparing two global equivalences ratios; one is measured from Lambda sensor installed at exhaust port, the other one is estimated from intake air mass and injected fuel mass. In the present study, the differences in global equivalence ratios were mainly caused from oil dilution during post injection. The experimental results of the present study suggest an optimal engine operating conditions including fuel injection strategy to get appropriate exhaust gas temperature for DPF regeneration. Experimental results of exhaust gas temperature distributions for various engine operating conditions were summarized. In addition, it was revealed that amounts of oil dilution were reduced by splitting post injection (i.e., double post injection). Effects of injection pressure on exhaust gas temperature were dependent on combustion phasing and injection strategies.


Author(s):  
Xiaofeng Yang ◽  
Seunghwan Keum ◽  
Tang-wei Kuo

In Computational Fluid Dynamics (CFD) simulations of internal combustion engines, one of the critical modeling parameters is the valve setup. A standard workaround is to keep the valve opens at a certain clearance (minimum valve lift), while imposing a solid boundary to mimic valve closure. This method would yield a step change in valve lift during opening and closing event, and different valve event timing than hardware. Two parametric studies were performed to examine a) the effect of the minimum valve lift and b) the effect of grid resolution at the minimum valve lift on predicted in-cylinder flow fields in Reynolds Averaged Navier-Stokes (RANS) simulations. The simulation results were compared with the state-of-art PIV measurement from a two-valve transparent combustion chamber (TCC-3) engine. The comparisons revealed that the accuracy of flow simulation are sensitive to the choice of minimum valve lift and grid resolution in the valve seat region. In particular, the predicted in-cylinder flow field during the intake process was found to be very sensitive to the valve setup. A best practice CFD valve setup strategy is proposed as a result of this parametric studies. The proposed CFD valve setup was applied to Large Eddy Simulation (LES) of TCC-3 engine and preliminary results showed noticeable improvement already. Further evaluation of the valve setup strategy for LES simulations is on-going and will be reported in a separate report.


Author(s):  
Ashwin A. Salvi ◽  
John Hoard ◽  
Dan Styles ◽  
Dennis Assanis

The use of exhaust gas recirculation (EGR) in internal combustion engines has significant impacts on engine combustion and emissions. EGR can be used to reduce in-cylinder NOx production, reduce fuel consumption, and enable advanced forms of combustion. To maximize the benefits of EGR, the exhaust gases are often cooled with liquid to gas heat exchangers. However, the build up of a fouling deposit layer from exhaust particulates and volatiles result in the decrease of heat exchanger efficiency, and increase the outlet temperature of the exhaust gases, and decrease the advantages of EGR. This paper presents experimental data from a novel in-situ measurement technique in a visualization rig during the development of a 378 micron thick deposit layer. Measurements were performed every 6 hours for up to 24 hours. Results show a non-linear increase in deposit thickness with an increase in layer surface area as deposition continued. Deposit surface temperature and temperature difference across the thickness of the layer was shown to increase with deposit thickness while heat transfer decreased. The provided measurements combine to produce deposit thermal conductivity. A thorough uncertainty analysis of the in-situ technique is presented and suggests higher measurement accuracy at thicker deposit layers and with larger temperature differences across the layer. The interface and wall temperature measurements are identified as the strongest contributors to the measurement uncertainty. Due to instrument uncertainty, the influence of deposit thickness and temperature could not be determined. At an average deposit thickness of 378 microns and at a temperature of 100°C, the deposit thermal conductivity was determined to be 0.044 ± 0.0062 W/mK at a 90% confidence interval based on instrument accuracy.


Author(s):  
Kang Pan ◽  
James S. Wallace

A numerical study of ignition and combustion in a glow plug (GP) assisted direct-injection natural gas (DING) engine is presented in this paper. The glow plug is shielded and the shield design is an important part of the combustion system development. The results simulated by KIVA-3V indicated that the ignition delay (ID) predicted by an in-cylinder pressure rise was different from that based on a temperature rise, attributed to the additional time required to burn more fuel to obtain a detectable pressure rise in the combustion chamber. This time difference for the ignition delay estimation can be 0.5 ms, which is significant relative to an ignition delay value of less than 2 ms. To further evaluate the time difference between the two different methods of ignition delay determination, sensitivity studies were conducted by changing the glow plug temperature, and rotating the glow plug shield opening angle towards the fuel jets. The results indicated that the ID method time difference varied from 0.3 to 0.8 ms for different combustion chamber configurations. In addition, this study also investigated the influences of different glow plug shield parameters on the natural gas ignition and combustion characteristics, by modifying the air gap between the glow plug and its shield, and by changing the shield opening size. The computational results indicated that a bigger air gap inside the shield can delay gas ignition, and a smaller shield opening can block the flame propagation for some specific fuel injection angles.


Author(s):  
Wenming Yang ◽  
Hui An ◽  
Jing Li ◽  
Dezhi Zhou ◽  
Markus Kraft

There are many NOx removal technologies: exhaust gas recirculation (EGR), selective catalytic reduction (SCR), selective non-catalytic reduction (SNCR), miller cycle, emulsion technology and engine performance optimization. In this work, a numerical simulation investigation was conducted to explore the possibility of an alternative approach: direct aqueous urea solution injection on the reduction of NOx emissions of a biodiesel fueled diesel engine. Simulation was performed using the 3D CFD simulation software KIVA4 coupled with CHEMKIN II code for pure biodiesel combustion under realistic engine operating conditions of 2400 rpm and 100% load. To improve the overall prediction accuracy, the Kelvin-Helmholtz and Rayleigh-Taylor (KH-RT) spray break up model was implemented in the KIVA code to replace the original Taylor Analogy Breakup (TAB) model for the primary and secondary fuel breakup processes modeling. The KIVA4 code was further modified to accommodate multiple injections, different fuel types and different injection orientations. A skeletal reaction mechanism for biodiesel + urea was developed which consists of 95 species and 498 elementary reactions. The chemical behaviors of the NOx formation and Urea/NOx interaction processes were modeled by a modified extended Zeldovich mechanism and Urea/NOx interaction sub-mechanism. Developed mechanism was first validated against the experimental results conducted on a light duty 2KD FTV Toyota car engine fueled by pure biodiesel in terms of in-cylinder pressure, heat release rate. To ensure an efficient NOx reduction process, various aqueous urea injection strategies in terms of post injection timing and injection rate were carefully examined. The simulation results revealed that among all the four post injection timings (10 °ATDC, 15 °ATDC, 20 °ATDC and 25 °ATDC) that were evaluated, 15 °ATDC post injection timing consistently demonstrated a lower NO emission level. In addition, both the urea/water ratio and aqueous urea injection rate demonstrated important roles which affected the thermal decomposition of urea into ammonia and the subsequent NOx removal process, and it was suggested that 50% urea mass fraction and 40% injection rate presented the lowest NOx emission levels.


Author(s):  
Jihad A. Badra ◽  
Jaeheon Sim ◽  
Ahmed Elwardany ◽  
Mohammed Jaasim ◽  
Yoann Viollet ◽  
...  

Gasoline compression ignition (GCI), also known as partially premixed compression ignition (PPCI) and gasoline direct injection compression ignition (GDICI), engines have been considered an attractive alternative to traditional spark ignition engines. Lean burn combustion with the direct injection of fuel eliminates throttle losses for higher thermodynamic efficiencies, and the precise control of the mixture compositions allows better emission performance such as NOx and particulate matter (PM). Recently, low octane gasoline fuel has been identified as a viable option for the GCI engine applications due to its longer ignition delay characteristics compared to diesel and lighter evaporation compared to gasoline fuel [1]. The feasibility of such a concept has been demonstrated by experimental investigations at Saudi Aramco [1, 2]. The present study aims to develop predictive capabilities for low octane gasoline fuel compression ignition engines with accurate characterization of the spray dynamics and combustion processes. Full three-dimensional simulations were conducted using CONVERGE as a basic modeling framework, using Reynolds-averaged Navier-Stokes (RANS) turbulent mixing models. An outwardly opening hollow-cone spray injector was characterized and validated against existing and new experimental data. An emphasis was made on the spray penetration characteristics. Various spray breakup and collision models have been tested and compared with the experimental data. An optimum combination has been identified and applied in the combusting GCI simulations. Linear instability sheet atomization (LISA) breakup model and modified Kelvin-Helmholtz and Rayleigh-Taylor (KH-RT) break models proved to work the best for the investigated injector. Comparisons between various existing spray models and a parametric study have been carried out to study the effects of various spray parameters. The fuel effects have been tested by using three different primary reference fuel (PRF) and toluene primary reference fuel (TPRF) surrogates. The effects of fuel temperature and chemical kinetic mechanisms have also been studied. The heating and evaporative characteristics of the low octane gasoline fuel and its PRF and TPRF surrogates were examined.


Author(s):  
Anwar Alkeilani ◽  
Le Yi Wang ◽  
Hao Ying

At the present time, both control and estimation accuracies of engine torque are causes for under-achieving optimal drivability and performance in today’s production vehicles. The major focus in this area has been to enhance torque estimation and control accuracies using existing open-loop torque control and estimation structures. Such an approach does not guarantee optimum torque tracking accuracy and optimum estimation accuracy due to air flow and efficiencies estimations errors. Furthermore, current approach overlooks the fast torque path tracking which does not have any related feedback. Recently, explicit torque feedback control has been proposed in the literature using either estimated or measured torques as feedback to control the torque using the slow torque path only. We propose the usage of a surface acoustic wave (SAW) torque sensor to measure the engine brake torque and feedback the signal to control the torque using both the fast and slow torque paths utilizing an inner-outer loop control structure. The fast torque path feedback is coordinated with the slow torque path by a novel method using the potential torque that is adapted to the sensor reading. The torque sensor signal enables a fast and explicit torque feedback control that can correct torque estimation errors and improve drivability, emission control, and fuel economy. Control-oriented engine models for the 3.6L engine are developed. Computer simulations are performed to investigate the advantages and limitations of the proposed control strategy, versus the existing strategies. The findings include an improvement of 14% in gain margin and 60% in phase margin when the torque feedback is applied to the cruise control torque request at the simulated operating point. This study demonstrates that the direct torque feedback is a powerful technology with promising results for improved powertrain performance and fuel economy.


Author(s):  
Ryan A. Bandura ◽  
Timothy J. Jacobs

Computational fluid dynamics (CFD) is now a ubiquitous computational tool for engine design and diagnosis. It is often necessary to provide well-known initial cycle conditions to commence the CFD computations. Such initial conditions can be provided by experimental data. To create an opportunity to computationally study engine conditions where experimental data are not available, a zero-dimensional quasi-predictive thermodynamic simulation is developed that uses well-established spray model to predict rate of heat release and calculated burned gas composition and temperature to predict nitric oxide (NO) concentration. This simulation could in turn be used in reverse to solve for initial cylinder conditions for a targeted NO concentration. This paper details the thermodynamic simulation for diesel engine operating conditions. The goal is to produce a code that is capable of predicting NO emissions as well as performance characteristics such as mean effective pressure (MEP) and brake specific fuel consumption (BSFC). The simulation uses general conservation of mass and energy approaches to model intake, compression, and exhaust. Rate of heat release prediction is based on an existing spray model to predict how fuel concentrations within the spray jet change with penetration. Rate of heat release provides predicted cylinder pressure, which is then validated against experimental pressure data under known operating conditions. An equilibrium mechanism is used to determine burned gas composition which, along with burned gas temperature, can be used for prediction of NO in the cylinder. NO is predicted using the extended Zeldovich mechanism. This mechanism is highly sensitive to temperature, and it is therefore important to accurately predict cylinder gas temperature to obtain correct NO values. Additionally, MEP and BSFC are determined. The simulation focuses on single fuel injection events, but insights are provided to expand the simulation to model multiple injection events.


Author(s):  
Isna Y. Goenawan ◽  
Linjie (Robin) Hu ◽  
Shazam Williams

In some regions of the world, emissions of total organic carbon (TOC), including methane and non-methane hydrocarbons (NMHCs), from the tail pipe of natural gas or biogas fuelled combustion equipments are strictly regulated (e.g. 150 mg/Nm3 of exhaust gas in Italy). Post combustor has been widely chosen in response to the TOC emission targets. TOC typically consists of >90% methane — a strong greenhouse gas and the most challenging compound to remove due to its highly stable form. Thus, more gas is being consumed to burn the TOC present in the exhaust, resulting in higher operating (or power production) costs. A passive catalytic approach is an alternative to post combustor. Palladium based oxidation catalyst is known to actively remove TOC, providing no sulfur compounds present. Sulfur poisons and deactivates the catalyst in a short time. This paper presents a concept to extend the life of the oxidation catalyst by using an exhaust post conditioning system. The system is designed to eliminate and withstand contaminants, yielding a protection to the catalyst. Consequently, the catalyst life is prolonged by about 50 times.


Sign in / Sign up

Export Citation Format

Share Document