Response-Adaptive Allocation for Binary Outcomes: Bayesian Methods from the BASS Conference

Author(s):  
Roy T. Sabo
2010 ◽  
Vol 20 (6) ◽  
pp. 595-612 ◽  
Author(s):  
Steven A Julious ◽  
Roger J Owen

Non-inferiority trials are motivated in the context of clinical research where a proven active treatment exists and placebo-controlled trials are no longer acceptable for ethical reasons. Instead, active-controlled trials are conducted where a treatment is compared to an established treatment with the objective of demonstrating that it is non-inferior to this treatment. We review and compare the methodologies for calculating sample sizes and suggest appropriate methods to use. We demonstrate how the simplest method of using the anticipated response is predominantly consistent with simulations. In the context of trials with binary outcomes with expected high proportions of positive responses, we show how the sample size is quite sensitive to assumptions about the control response. We recommend when designing such a study that sensitivity analyses be performed with respect to the underlying assumptions and that the Bayesian methods described in this article be adopted to assess sample size.


Author(s):  
Fahad M. Al Amer ◽  
Christopher G. Thompson ◽  
Lifeng Lin

Bayesian methods are an important set of tools for performing meta-analyses. They avoid some potentially unrealistic assumptions that are required by conventional frequentist methods. More importantly, meta-analysts can incorporate prior information from many sources, including experts’ opinions and prior meta-analyses. Nevertheless, Bayesian methods are used less frequently than conventional frequentist methods, primarily because of the need for nontrivial statistical coding, while frequentist approaches can be implemented via many user-friendly software packages. This article aims at providing a practical review of implementations for Bayesian meta-analyses with various prior distributions. We present Bayesian methods for meta-analyses with the focus on odds ratio for binary outcomes. We summarize various commonly used prior distribution choices for the between-studies heterogeneity variance, a critical parameter in meta-analyses. They include the inverse-gamma, uniform, and half-normal distributions, as well as evidence-based informative log-normal priors. Five real-world examples are presented to illustrate their performance. We provide all of the statistical code for future use by practitioners. Under certain circumstances, Bayesian methods can produce markedly different results from those by frequentist methods, including a change in decision on statistical significance. When data information is limited, the choice of priors may have a large impact on meta-analytic results, in which case sensitivity analyses are recommended. Moreover, the algorithm for implementing Bayesian analyses may not converge for extremely sparse data; caution is needed in interpreting respective results. As such, convergence should be routinely examined. When select statistical assumptions that are made by conventional frequentist methods are violated, Bayesian methods provide a reliable alternative to perform a meta-analysis.


2019 ◽  
Vol 62 (3) ◽  
pp. 577-586 ◽  
Author(s):  
Garnett P. McMillan ◽  
John B. Cannon

Purpose This article presents a basic exploration of Bayesian inference to inform researchers unfamiliar to this type of analysis of the many advantages this readily available approach provides. Method First, we demonstrate the development of Bayes' theorem, the cornerstone of Bayesian statistics, into an iterative process of updating priors. Working with a few assumptions, including normalcy and conjugacy of prior distribution, we express how one would calculate the posterior distribution using the prior distribution and the likelihood of the parameter. Next, we move to an example in auditory research by considering the effect of sound therapy for reducing the perceived loudness of tinnitus. In this case, as well as most real-world settings, we turn to Markov chain simulations because the assumptions allowing for easy calculations no longer hold. Using Markov chain Monte Carlo methods, we can illustrate several analysis solutions given by a straightforward Bayesian approach. Conclusion Bayesian methods are widely applicable and can help scientists overcome analysis problems, including how to include existing information, run interim analysis, achieve consensus through measurement, and, most importantly, interpret results correctly. Supplemental Material https://doi.org/10.23641/asha.7822592


Methodology ◽  
2008 ◽  
Vol 4 (3) ◽  
pp. 132-138 ◽  
Author(s):  
Michael Höfler

A standardized index for effect intensity, the translocation relative to range (TRR), is discussed. TRR is defined as the difference between the expectations of an outcome under two conditions (the absolute increment) divided by the maximum possible amount for that difference. TRR measures the shift caused by a factor relative to the maximum possible magnitude of that shift. For binary outcomes, TRR simply equals the risk difference, also known as the inverse number needed to treat. TRR ranges from –1 to 1 but is – unlike a correlation coefficient – a measure for effect intensity, because it does not rely on variance parameters in a certain population as do effect size measures (e.g., correlations, Cohen’s d). However, the use of TRR is restricted on outcomes with fixed and meaningful endpoints given, for instance, for meaningful psychological questionnaires or Likert scales. The use of TRR vs. Cohen’s d is illustrated with three examples from Psychological Science 2006 (issues 5 through 8). It is argued that, whenever TRR applies, it should complement Cohen’s d to avoid the problems related to the latter. In any case, the absolute increment should complement d.


Sign in / Sign up

Export Citation Format

Share Document