Implementation of a Secure and Efficient Routing Algorithm for Vehicular Ad Hoc Networks

Author(s):  
M. N. Prashanth ◽  
Annapurna P. Patil
Author(s):  
Leandro N. Balico ◽  
Horacio A.B.F. Oliveira ◽  
Raimundo S. Barreto ◽  
Antonio A.F. Loureiro ◽  
Richard W. Pazzi

Author(s):  
Raúl Aquino-Santos ◽  
Víctor Rangel-Licea ◽  
Miguel A. García-Ruiz ◽  
Apolinar González-Potes ◽  
Omar Álvarez-Cardenas ◽  
...  

This chapter proposes a new routing algorithm that allows communication in vehicular ad hoc networks. In vehicular ad hoc networks, the transmitter node cannot determine the immediate future position of the receiving node beforehand. Furthermore, rapid topological changes and limited bandwidth compound the difficulties nodes experience when attempting to exchange position information. The authors first validate their algorithm in a small-scale network with test bed results. Then, for large-scale networks, they compare their protocol with the models of two prominent reactive routing algorithms: Ad-Hoc On-Demand Distance Vector and Dynamic Source Routing on a multi-lane circular dual motorway, representative of motorway driving. Then the authors compare their algorithm with motorway vehicular mobility, a location-based routing algorithm, on a multi-lane circular motorway. This chapter then provides motorway vehicular mobility results of a microscopic traffic model developed in OPNET, which the authors use to evaluate the performance of each protocol in terms of: Route Discovery Time, End to End Delay, Routing Overhead, Overhead, Routing Load, and Delivery Ratio.


2015 ◽  
Vol 75 (2) ◽  
pp. 205-220 ◽  
Author(s):  
Ravi Shankar Shukla ◽  
Neeraj Tyagi ◽  
Ashutosh Gupta ◽  
Kamlesh Kumar Dubey

Author(s):  
Kishor N. Tayade, Et. al.

Vehicular Ad hoc Networks is a promising sub-group of MANET. VANET is deployed on the highways, where the vehicles are mobile nodes. Safety and intelligent transportation are important VANET applications that require appropriate communication among vehicles, in particular routing technology. VANETs generally inherit their common features from MANETs where vehicles operate in a collaborative and dispersed way for promoting contact among vehicles and with network infrastructure like the Road Side Units (RSU) for enhanced traffic experience. In view of the fast growth of Intelligent Transportation Systems (ITS), VANETs has attracted considerable interest in this decade. VANET suffer from a major problem of link failure due to dynamic mobility of vehicles. In this paper we proposed a position based routing algorithm to identify stable path, this will improve the routing by decreasing overhead and interrupting the number of links. Link Expiration Time (LET) is used to provide the stable link, the link with the longest LET is considered as the most stable link. The multicast Ad-hoc On-demand Distance Vector (MAODV) is proposed to avoid the link breakages by using a link with longest LET.  Data loss is reduced by avoiding link breakages and enhance throughput by reducing the communication delay.


Sign in / Sign up

Export Citation Format

Share Document