relay node
Recently Published Documents


TOTAL DOCUMENTS

643
(FIVE YEARS 200)

H-INDEX

26
(FIVE YEARS 8)

Author(s):  
Ravi Kishore Veluri

Abstract: While various ad hoc mobile wireless networks are already accessible, Bluetooth is one of the most up-to-date. A single-hop connection known as piconet is a simple Bluetooth communication architecture, allowing for just eight functioning electronic equipment, seven of which are operational slaves under a single master. A common hub called a relay links a huge network named Scatternet to a number of piconets. The efficacy of Scatternet design is clearly intrinsically connected to the effectiveness of relay nodes. Because every relay has several piconet transactions to process and manage, a reduction in the number of switches might lead to poor performance instead. The major aim of this research is to examine performance characteristics which impact interplay since the role of the base station is to multiple piconet transitions. In this study, we evaluate and respond to the technical issues that must be optimally solved the Scatternet data flow based on the relay node. Keywords: Bluetooth, Piconet, Scatternet, Relay Node


2021 ◽  
Author(s):  
Binod Prasad ◽  
Gopal Chandra Das ◽  
Srinivas Nallagonda ◽  
Seemanti Saha ◽  
Abhijit Bhowmick

Abstract The performance of a relay based Half-Duplex (HD) and Full-Duplex (FD) cooperative cognitive radio (CR) network with a RF energy harvesting (EH) is studied in this paper. Co-operative environment includes a network with multiple primary users (PUs), and CRs. The relay node is considered as an EH node which harvests energy (HE) from RF signal (RFS) of source and loop-back interference. The network performance is studied for instantaneous transmission and delay constraint transmission for decode and forward (DF) relaying protocol. The performance is investigated under a relay energy outage constraint and the expression of throughput is redesigned. Expressions of energy outage, data outage and throughput for HD and FD are developed. The impact of several parameters such as transmitting SNR, fractional harvesting time parameter, fractional transmission time parameter, and loop-back interference on the system throughput has been investigated.


2021 ◽  
Vol 13 (2) ◽  
pp. 79-88
Author(s):  
Misfa Susanto ◽  
Sitronella Nurfitriani Hasim ◽  
Helmy Fitriawan

Femtocell is one of solutions to improve quality of services and network capacity for users in indoor areas. Radio resources used by femtocells are shared from macrocell network, thus it saves the use of frequency spectrum. However, one of problems in deploying femtocells within coverage area of macrocells is interference due to radio resources sharing between femtocells and macrocells. It creates interferences called as cross-tier (macrocell-femtocell/femtocell-macrocell) and co-tier (macrocell-macrocell/femtocell-femtocell) interferences. This paper proposes a relay-based clustering method to mitigate interference in femtocells located in the whole edge area of macrocell and the cell edge area of sectorized macrocells. Relay nodes are deployed statically (fixed location) in the neighboring macrocell area. Relay node will recruit their members based on the shortest distance. Certain relay node’s members do not need to transmit large amounts of power to enhanced Node B (eNB), such that interference from Macrocell User Equipment (MUE) to Home enhanced Node B (HeNB) can be minimized. Simulation experiments has been carried out and optimistic results for the sectorized macrocells scenario show that Signal-to-Interference-plus-Noise-Ratio (SINR) of femtocells for the conventional system that does not reach the targeted SINR of 20 dB is 87%. Meanwhile, after applying the relay-based clustering method, SINR value of femtocells below or equal to 20 dB reaches 72%. Optimistic results for throughput and Bit Error Rate (BER) show improvement of 15% and 14%, respectively. It has been shown that the relay-based clustering method can provide better performance compared to the conventional system even for femtocells densely deployed.


Author(s):  
A. Nageswar Rao ◽  
B. Rajendra Naik ◽  
L. Nirmala Devi

<span>In wireless sensor networks (WSNs), energy, connectivity, and coverage are the three most important constraints for guaranteed data forwarding from every sensor node to the base station. Due to continuous sensing and transmission tasks, the sensor nodes deplete more quickly and hence they seek the help of data forwarding nodes, called relay nodes. However, for a given set of sensor nodes, finding optimal locations to place relay nodes is a very challenging problem. Moreover, from the earlier studies, the relay node placement is defined as a non-deterministic polynomial tree hard (NP-Hard) problem. To solve this problem, we propose a multi-objective firefly algorithm-based relay node placement (MOFF-RNP) to deploy an optimal number of relay nodes while considering connectivity, coverage, and energy constraints. To achieve network lifetime, this work adopted energy harvesting capabilities to the sensor nodes and backup relay strategy such that every sensor node is always connected to at least one relay to forward the data. The optimal relay placement is formulated as an objective function and MOFF is applied to achieve a better solution. Extensive Simulations are carried out over the proposed model to validate the performance and the obtained results are compared with state-of-art methods)</span>


Symmetry ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 2109
Author(s):  
Ruiying Cheng ◽  
Pan Zhang ◽  
Lei Xie ◽  
Yongqi Ai ◽  
Peng Xu

In traditional cloud computing research, it is often considered that the network resources between edge devices and cloud platform are sufficient, and the symmetry between the upward link from edge devices to the cloud platform and the downward link from cloud platform to edge devices is definite. However, in many application scenarios, the network resources between edge devices and cloud platform might be limited, and the link symmetry may not be guaranteed. To solve this problem, network relay nodes are introduced to realize the data transmission between edge devices and the cloud platform. The environment in which network relay nodes that can cooperate with the cloud platform is called cloud network collaborative environment (CNCE). In CNCE, how to optimize data transmission from edge devices to cloud platform through relay nodes has become one of the most important research topics. In this paper, we focus on the following two influencing factors that previous studies ignored: (1) the multi-link and multi-constraint transmission process; and (2) the timely resource state of the relay node. Taking these factors into consideration, we design a novel data transmission scheduling algorithm, called ant colony based transmission scheduling approach (ACTS). First, we propose a multi-link optimization mechanism to optimize the constraint limits. This mechanism divides the transmission into two links called the downlink relay link and uplink relay link. For the downlink relay link, we use the store-and-forward method for the optimization. For the uplink relay link, we use the min–min method for the optimization. We use the ant colony algorithm for the overall optimization of the two links. Finally, we improve the pheromone update rule of the ant colony algorithm to avoid the algorithm from falling into a local optimum. Extensive experiments demonstrate that our proposed approach has better results in transmission efficiency than other advanced algorithms.


Author(s):  
Rahul Sachdeva ◽  
◽  
Amita Dev ◽  

Opportunistic Networks can be defined as Delay Tolerant Network, which are formed dynamically with participating nodes’ help. Opportunistic Networks follows Store-Carry-Forward principle to deliver/route the data in the network. Routing in Opportunistic Network starts with the Seed Node (Source Node) which delivers the data with the help of Intermediate nodes. Intermediate nodes store the data while roaming in the network until it comes in contact with appropriate forwarding node (relay node) or destination node itself. An extensive literature survey is performed to analyse various routing protocols defined for Opportunistic Network. With mobility induced routing, establishing and maintaining the routing path is a major challenge. Further, Store-Carry-Forward routing paradigm imposes various challenges while implementing and executing the network. Due to the unavailability of the suitable relay node, data needs to be stored within the Node’s Memory, imposes buffer storage issues at the node level. Also, uncontrolled flooding may impose link-level Congestion and treated as overhead to maintain the network. Another major challenge can be maintaining the energy level of the nodes in the network. Recently developed ONE (Opportunistic Network Environment) Simulator is used to simulate and emulate the environment required by Opportunistic Network. Along with the extensive literature survey of the protocols, few of the existing protocols viz. Direct Delivery, ProPHET, Epidemic and Spray & Wait Routing are implemented using ONE Simulator to analyse their performance while in execution. Results are being compared, and the researchers’ future direction is identified to address the open problems and challenges in Opportunistic Network.


Sensors ◽  
2021 ◽  
Vol 21 (20) ◽  
pp. 6878
Author(s):  
Sang Ik Han ◽  
Jaeuk Baek

UAV equipped three-dimensional (3D) wireless networks can provide a solution for the requirements of 5G communications, such as enhanced Mobile Broadband (eMBB) and massive Machine Type Communications (mMTC). Especially, the introduction of an unmanned aerial vehicle (UAV) as a relay node can improve the connectivity, extend the terrestrial base station (BS) coverage and enhance the throughput by taking advantage of a strong air-to-ground line of sight (LOS) channel. In this paper, we consider the deployment and resource allocation of UAV relay network (URN) to maximize the throughput of user equipment (UE) within a cell, while guaranteeing a reliable transmission to UE outside the coverage of BS. To this end, we formulate joint UAV deployment and resource allocation problems, whose analytical solutions can be hardly obtained, in general. We propose a fast and practical algorithm to provide the optimal solution for the number of transmit time slots and the UAV relay location in a sequential manner. The transmit power at BS and UAV is determined in advance based on the availability of channel state information (CSI). Simulation results demonstrate that the proposed algorithms can significantly reduce the computational effort and complexity to determine the optimal UAV location and transmit time slots over an exhaustive search.


Sensors ◽  
2021 ◽  
Vol 21 (19) ◽  
pp. 6605
Author(s):  
Ramsha Narmeen ◽  
Jaehak Chung

In long distance sensor nodes, propagation delay is the most crucial factor for the successful transmission of data packets in underwater acoustic sensors networks (UWAs). Therefore, to cope with the problem of propagation delay, we propose examining and selecting the best relay node (EBRN) technique based on checking the eligibility and compatibility of RN and selecting the best RN for UWAs. In the EBRN technique, the source node (S) creates a list of the best RNs, based on the minimum propagation delay to the midpoint of a direct link between S and the destination node (D). After that, the S attaches the list of selected RNs and transmit to the D along with data packets. Finally, from the list of selected RNs, the process of retransmission is performed. To avoid collision among control packets, we use a backoff timer that is calculated from the received signal strength indicator (RSSI), propagation delay and transmission time, whereas the collision among data packets is avoided by involving single RN in a particular time. The performance of the proposed EBRN technique is analyzed and evaluated based on throughput, packet loss rate (LR), packet delivery ratio (PDR), energy efficiency, and latency. The simulation results validate the effectiveness of the proposed EBRN technique. Compared with the existing schemes such as underwater cooperative medium access control (UCMAC) and shortest path first (SPF), the proposed EBRN technique performs remarkably well by increasing the throughput, PDR, and energy efficiency while decreasing the latency and LR in UWAs.


Sign in / Sign up

Export Citation Format

Share Document