A Novel Region Based Multipath Routing Algorithm for Vehicular Ad-hoc Networks

Author(s):  
Author(s):  
Leandro N. Balico ◽  
Horacio A.B.F. Oliveira ◽  
Raimundo S. Barreto ◽  
Antonio A.F. Loureiro ◽  
Richard W. Pazzi

Author(s):  
Raúl Aquino-Santos ◽  
Víctor Rangel-Licea ◽  
Miguel A. García-Ruiz ◽  
Apolinar González-Potes ◽  
Omar Álvarez-Cardenas ◽  
...  

This chapter proposes a new routing algorithm that allows communication in vehicular ad hoc networks. In vehicular ad hoc networks, the transmitter node cannot determine the immediate future position of the receiving node beforehand. Furthermore, rapid topological changes and limited bandwidth compound the difficulties nodes experience when attempting to exchange position information. The authors first validate their algorithm in a small-scale network with test bed results. Then, for large-scale networks, they compare their protocol with the models of two prominent reactive routing algorithms: Ad-Hoc On-Demand Distance Vector and Dynamic Source Routing on a multi-lane circular dual motorway, representative of motorway driving. Then the authors compare their algorithm with motorway vehicular mobility, a location-based routing algorithm, on a multi-lane circular motorway. This chapter then provides motorway vehicular mobility results of a microscopic traffic model developed in OPNET, which the authors use to evaluate the performance of each protocol in terms of: Route Discovery Time, End to End Delay, Routing Overhead, Overhead, Routing Load, and Delivery Ratio.


2019 ◽  
Vol 26 (4) ◽  
pp. 251-265

In mobile ad hoc networks (MANET), the location-based multipath routing protocols involves less routing overhead compared to non-location-based protocols. This paper proposes two location-based algorithms, Enhanced Location-aided Level-based node Disjoint Multipath routing (ELLDMR) and Secure Location-aided Level-based node Disjoint Multipath routing (SLLDMR), to enhance the link lifetime and the security of the MANET. The objective of ELLDMR is to build multiple paths with non-critical nodes so that the lifetime of the routing path is significantly increased. It also hides the source, destination and path identity in intermediate nodes to avoid intrusion of routing attacks in the routing path. The SLLDMR is an enhancement over ELLDMR where it aims to overcome rushing attack and exhibit secure data transmission using two-level cryptographic processes. The performances of ELLDMR and SLLDMR are simulated using NS2 where it shows a minimum routing overhead, less end to end delay and high packet delivery compared to existing Location-aided Level-based node Disjoint Multipath routing (LLDMR) algorithm and Topology Hiding multipath protocol (TOHIP).


Sign in / Sign up

Export Citation Format

Share Document