Stability Analysis of Non-homogeneous Soil Slopes Using Numerical Techniques

Author(s):  
D. Chatterjee ◽  
A. Murali Krishna
2019 ◽  
Vol 2019 ◽  
pp. 1-18 ◽  
Author(s):  
Chaowei Sun ◽  
Junrui Chai ◽  
Bin Ma ◽  
Tao Luo ◽  
Ying Gao ◽  
...  

This paper uses the modified strength reduction finite element method to propose stability charts for pseudostatic stability analysis of three-dimensional (3D) homogeneous soil slopes subjected to seismic excitation. These charts are developed in a wide range of input parameters for purely cohesive slopes and cohesive-frictional slopes, respectively. Effect of the horizontal seismic load is approximately considered using the quasistatic approach. The stability charts allow to determine the factor of safety without any iterative procedure and identify the corresponding critical slope failure mechanism. A slope example is employed to illustrate the application and reliability of these stability charts.


2011 ◽  
Vol 2011 ◽  
pp. 1-24 ◽  
Author(s):  
A. Samuelson ◽  
P. Seshaiyer

The enlargement and rupture of intracranial and abdominal aortic aneurysms constitutes a major medical problem. It has been suggested that enlargement and rupture are due to mechanical instabilities of the associated complex fluid-solid interaction in the lesions. In this paper, we examine a coupled fluid-structure mathematical model for a cylindrical geometry representing an idealized aneurysm using both analytical and numerical techniques. A stability analysis for this subclass of aneurysms is presented. It is shown that this subclass of aneurysms is dynamically stable both with and without a viscoelastic contribution to the arterial wall.


2020 ◽  
Vol 27 (7) ◽  
pp. 1965-1980
Author(s):  
Rui Zhang ◽  
Ming-xu Long ◽  
Tian Lan ◽  
Jian-long Zheng ◽  
Chao Geoff

Sign in / Sign up

Export Citation Format

Share Document