NUPT ST-Data Miner: An Spatio-Temporal Data Analysis and Visualization System

Author(s):  
Zhiqiang Zou ◽  
Junjie Xiong ◽  
Xu He ◽  
Haihong Dai
2019 ◽  
Vol 13 (01) ◽  
pp. 111-133
Author(s):  
Romita Banerjee ◽  
Karima Elgarroussi ◽  
Sujing Wang ◽  
Akhil Talari ◽  
Yongli Zhang ◽  
...  

Twitter is one of the most popular social media platforms used by millions of users daily to post their opinions and emotions. Consequently, Twitter tweets have become a valuable knowledge source for emotion analysis. In this paper, we present a new framework, K2, for tweet emotion mapping and emotion change analysis. It introduces a novel, generic spatio-temporal data analysis and storytelling framework that can be used to understand the emotional evolution of a specific section of population. The input for our framework is the location and time of where and when the tweets were posted and an emotion assessment score in the range [Formula: see text], with [Formula: see text] representing a very high positive emotion and [Formula: see text] representing a very high negative emotion. Our framework first segments the input dataset into a number of batches with each batch representing a specific time interval. This time interval can be a week, a month or a day. By generalizing existing kernel density estimation techniques in the next step, we transform each batch into a continuous function that takes positive and negative values. We have used contouring algorithms to find the contiguous regions with highly positive and highly negative emotions belonging to each member of the batch. Finally, we apply a generic, change analysis framework that monitors how positive and negative emotion regions evolve over time. In particular, using this framework, unary and binary change predicate are defined and matched against the identified spatial clusters, and change relationships will then be recorded, for those spatial clusters for which a match occurs. We also propose animation techniques to facilitate spatio-temporal data storytelling based on the obtained spatio-temporal data analysis results. We demo our approach using tweets collected in the state of New York in the month of June 2014.


Author(s):  
Naonori Ueda ◽  
Futoshi Naya

Machine learning is a promising technology for analyzing diverse types of big data. The Internet of Things era will feature the collection of real-world information linked to time and space (location) from all sorts of sensors. In this paper, we discuss spatio-temporal multidimensional collective data analysis to create innovative services from such spatio-temporal data and describe the core technologies for the analysis. We describe core technologies about smart data collection and spatio-temporal data analysis and prediction as well as a novel approach for real-time, proactive navigation in crowded environments such as event spaces and urban areas. Our challenge is to develop a real-time navigation system that enables movements of entire groups to be efficiently guided without causing congestion by making near-future predictions of people flow. We show the effectiveness of our navigation approach by computer simulation using artificial people-flow data.


2021 ◽  
Author(s):  
◽  
Benjamin Powley

<p>Air quality has an adverse impact on the health of people living in areas with poor quality air. Monitoring is needed to understand the effects of poor air quality. It is difficult to compare measurements to find trends and patterns between different monitoring sites when data is contained in separate data stores. Data visualization can make analyzing air quality more effective by making the data more understandable. The purpose of this research is to design and build a prototype for visualizing spatio-temporal data from multiple sources related to air quality and to evaluate the effectiveness of the prototype against criteria by conducting a user study. The prototype web based visualization system, AtmoVis, has a windowed layout with 6 different visualizations: Heat calendar, line plot, monthly rose, site view, monthly averages and data comparison. A pilot study was performed with 11 participants and used to inform the study protocol before the main user study was performed on 20 participants who were air quality experts or experienced with Geographic Information Systems (GIS). The results of the study demonstrated that the heat calendar, line plot, site view, monthly averages and monthly rose visualizations were effective for analyzing the air quality through AtmoVis. The line plot and the heat calendar were the most effective for temporal data analysis. The interactive web based interface for data exploration with a window layout, provided by AtmoVis, was an effective method for accessing air quality visualizations and inferring relationships among air quality variables at different monitoring sites. AtmoVis could potentially be extended to include other datasets in the future.</p>


2008 ◽  
Vol 45 (4) ◽  
pp. 697-713 ◽  
Author(s):  
Wei Chang ◽  
Daniel Zeng ◽  
Hsinchun Chen

2021 ◽  
Author(s):  
◽  
Benjamin Powley

<p>Air quality has an adverse impact on the health of people living in areas with poor quality air. Monitoring is needed to understand the effects of poor air quality. It is difficult to compare measurements to find trends and patterns between different monitoring sites when data is contained in separate data stores. Data visualization can make analyzing air quality more effective by making the data more understandable. The purpose of this research is to design and build a prototype for visualizing spatio-temporal data from multiple sources related to air quality and to evaluate the effectiveness of the prototype against criteria by conducting a user study. The prototype web based visualization system, AtmoVis, has a windowed layout with 6 different visualizations: Heat calendar, line plot, monthly rose, site view, monthly averages and data comparison. A pilot study was performed with 11 participants and used to inform the study protocol before the main user study was performed on 20 participants who were air quality experts or experienced with Geographic Information Systems (GIS). The results of the study demonstrated that the heat calendar, line plot, site view, monthly averages and monthly rose visualizations were effective for analyzing the air quality through AtmoVis. The line plot and the heat calendar were the most effective for temporal data analysis. The interactive web based interface for data exploration with a window layout, provided by AtmoVis, was an effective method for accessing air quality visualizations and inferring relationships among air quality variables at different monitoring sites. AtmoVis could potentially be extended to include other datasets in the future.</p>


Sign in / Sign up

Export Citation Format

Share Document