Classification of Hand Movement Stages for Brain–Computer Interface Using Convolutional Neural Network

Author(s):  
Kriti Singhal ◽  
Evi Agarwal ◽  
Arpit Yadav ◽  
Anuraj Singh
2018 ◽  
Vol 145 ◽  
pp. 293-299
Author(s):  
Bogdan L. Kozyrskiy ◽  
Anastasia O. Ovchinnikova ◽  
Alena D. Moskalenko ◽  
Boris M. Velichkovsky ◽  
Sergei L. Shishkin

2018 ◽  
Vol 28 (10) ◽  
pp. 1850034 ◽  
Author(s):  
Wei Li ◽  
Mengfan Li ◽  
Huihui Zhou ◽  
Genshe Chen ◽  
Jing Jin ◽  
...  

Increasing command generation rate of an event-related potential-based brain-robot system is challenging, because of limited information transfer rate of a brain-computer interface system. To improve the rate, we propose a dual stimuli approach that is flashing a robot image and is scanning another robot image simultaneously. Two kinds of event-related potentials, N200 and P300 potentials, evoked in this dual stimuli condition are decoded by a convolutional neural network. Compared with the traditional approaches, this proposed approach significantly improves the online information transfer rate from 23.0 or 17.8 to 39.1 bits/min at an accuracy of 91.7%. These results suggest that combining multiple types of stimuli to evoke distinguishable ERPs might be a promising direction to improve the command generation rate in the brain-computer interface.


Entropy ◽  
2019 ◽  
Vol 21 (12) ◽  
pp. 1199 ◽  
Author(s):  
Hyeon Kyu Lee ◽  
Young-Seok Choi

The motor imagery-based brain-computer interface (BCI) using electroencephalography (EEG) has been receiving attention from neural engineering researchers and is being applied to various rehabilitation applications. However, the performance degradation caused by motor imagery EEG with very low single-to-noise ratio faces several application issues with the use of a BCI system. In this paper, we propose a novel motor imagery classification scheme based on the continuous wavelet transform and the convolutional neural network. Continuous wavelet transform with three mother wavelets is used to capture a highly informative EEG image by combining time-frequency and electrode location. A convolutional neural network is then designed to both classify motor imagery tasks and reduce computation complexity. The proposed method was validated using two public BCI datasets, BCI competition IV dataset 2b and BCI competition II dataset III. The proposed methods were found to achieve improved classification performance compared with the existing methods, thus showcasing the feasibility of motor imagery BCI.


2007 ◽  
Vol 2007 ◽  
pp. 1-14 ◽  
Author(s):  
Qibin Zhao ◽  
Liqing Zhang

Brain-computer interface (BCI) systems create a novel communication channel from the brain to an output device bypassing conventional motor output pathways of nerves and muscles. Modern BCI technology is essentially based on techniques for the classification of single-trial brain signals. With respect to the topographic patterns of brain rhythm modulations, the common spatial patterns (CSPs) algorithm has been proven to be very useful to produce subject-specific and discriminative spatial filters; but it didn't consider temporal structures of event-related potentials which may be very important for single-trial EEG classification. In this paper, we propose a new framework of feature extraction for classification of hand movement imagery EEG. Computer simulations on real experimental data indicate that independent residual analysis (IRA) method can provide efficient temporal features. Combining IRA features with the CSP method, we obtain the optimal spatial and temporal features with which we achieve the best classification rate. The high classification rate indicates that the proposed method is promising for an EEG-based brain-computer interface.


2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Jaehong Yoon ◽  
Jungnyun Lee ◽  
Mincheol Whang

Feature of event-related potential (ERP) has not been completely understood and illiteracy problem remains unsolved. To this end, P300 peak has been used as the feature of ERP in most brain–computer interface applications, but subjects who do not show such peak are common. Recent development of convolutional neural network provides a way to analyze spatial and temporal features of ERP. Here, we train the convolutional neural network with 2 convolutional layers whose feature maps represented spatial and temporal features of event-related potential. We have found that nonilliterate subjects’ ERP show high correlation between occipital lobe and parietal lobe, whereas illiterate subjects only show correlation between neural activities from frontal lobe and central lobe. The nonilliterates showed peaks in P300, P500, and P700, whereas illiterates mostly showed peaks in around P700. P700 was strong in both subjects. We found that P700 peak may be the key feature of ERP as it appears in both illiterate and nonilliterate subjects.


Sign in / Sign up

Export Citation Format

Share Document