scholarly journals Classification of the gaze fixations in the eye-brain-computer interface paradigm with a compact convolutional neural network

2018 ◽  
Vol 145 ◽  
pp. 293-299
Author(s):  
Bogdan L. Kozyrskiy ◽  
Anastasia O. Ovchinnikova ◽  
Alena D. Moskalenko ◽  
Boris M. Velichkovsky ◽  
Sergei L. Shishkin
2018 ◽  
Vol 28 (10) ◽  
pp. 1850034 ◽  
Author(s):  
Wei Li ◽  
Mengfan Li ◽  
Huihui Zhou ◽  
Genshe Chen ◽  
Jing Jin ◽  
...  

Increasing command generation rate of an event-related potential-based brain-robot system is challenging, because of limited information transfer rate of a brain-computer interface system. To improve the rate, we propose a dual stimuli approach that is flashing a robot image and is scanning another robot image simultaneously. Two kinds of event-related potentials, N200 and P300 potentials, evoked in this dual stimuli condition are decoded by a convolutional neural network. Compared with the traditional approaches, this proposed approach significantly improves the online information transfer rate from 23.0 or 17.8 to 39.1 bits/min at an accuracy of 91.7%. These results suggest that combining multiple types of stimuli to evoke distinguishable ERPs might be a promising direction to improve the command generation rate in the brain-computer interface.


Entropy ◽  
2019 ◽  
Vol 21 (12) ◽  
pp. 1199 ◽  
Author(s):  
Hyeon Kyu Lee ◽  
Young-Seok Choi

The motor imagery-based brain-computer interface (BCI) using electroencephalography (EEG) has been receiving attention from neural engineering researchers and is being applied to various rehabilitation applications. However, the performance degradation caused by motor imagery EEG with very low single-to-noise ratio faces several application issues with the use of a BCI system. In this paper, we propose a novel motor imagery classification scheme based on the continuous wavelet transform and the convolutional neural network. Continuous wavelet transform with three mother wavelets is used to capture a highly informative EEG image by combining time-frequency and electrode location. A convolutional neural network is then designed to both classify motor imagery tasks and reduce computation complexity. The proposed method was validated using two public BCI datasets, BCI competition IV dataset 2b and BCI competition II dataset III. The proposed methods were found to achieve improved classification performance compared with the existing methods, thus showcasing the feasibility of motor imagery BCI.


2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Jaehong Yoon ◽  
Jungnyun Lee ◽  
Mincheol Whang

Feature of event-related potential (ERP) has not been completely understood and illiteracy problem remains unsolved. To this end, P300 peak has been used as the feature of ERP in most brain–computer interface applications, but subjects who do not show such peak are common. Recent development of convolutional neural network provides a way to analyze spatial and temporal features of ERP. Here, we train the convolutional neural network with 2 convolutional layers whose feature maps represented spatial and temporal features of event-related potential. We have found that nonilliterate subjects’ ERP show high correlation between occipital lobe and parietal lobe, whereas illiterate subjects only show correlation between neural activities from frontal lobe and central lobe. The nonilliterates showed peaks in P300, P500, and P700, whereas illiterates mostly showed peaks in around P700. P700 was strong in both subjects. We found that P700 peak may be the key feature of ERP as it appears in both illiterate and nonilliterate subjects.


2020 ◽  
pp. 1-14
Author(s):  
Xiangmin Lun ◽  
Zhenglin Yu ◽  
Fang Wang ◽  
Tao Chen ◽  
Yimin Hou

In order to develop an efficient brain-computer interface system, the brain activity measured by electroencephalography needs to be accurately decoded. In this paper, a motor imagery classification approach is proposed, combining virtual electrodes on the cortex layer with a convolutional neural network; this can effectively improve the decoding performance of the brain-computer interface system. A three layer (cortex, skull, and scalp) head volume conduction model was established by using the symmetric boundary element method to map the scalp signal to the cortex area. Nine pairs of virtual electrodes were created on the cortex layer, and the features of the time and frequency sequence from the virtual electrodes were extracted by performing time-frequency analysis. Finally, the convolutional neural network was used to classify motor imagery tasks. The results show that the proposed approach is convergent in both the training model and the test model. Based on the Physionet motor imagery database, the averaged accuracy can reach 98.32% for a single subject, while the averaged values of accuracy, Kappa, precision, recall, and F1-score on the group-wise are 96.23%, 94.83%, 96.21%, 96.13%, and 96.14%, respectively. Based on the High Gamma database, the averaged accuracy has achieved 96.37% and 91.21% at the subject and group levels, respectively. Moreover, this approach is superior to those of other studies on the same database, which suggests robustness and adaptability to individual variability.


Sign in / Sign up

Export Citation Format

Share Document