Environmental Chemistry, Fate and Speciation of Arsenic in Groundwater-Soil-Crop Systems

Author(s):  
Indranil Das ◽  
S. K. Sanyal ◽  
K. Ghosh
1995 ◽  
Vol 32 (9-10) ◽  
pp. 341-348
Author(s):  
V. Librando ◽  
G. Magazzù ◽  
A. Puglisi

The monitoring of water quality today provides a great quantity of data consisting of the values of the parameters measured as a function of time. In the marine environment, and especially in the suspended material, increasing importance is being given to the presence of organic micropollutants, particularly since some are known to be carcinogenic. As the number of measured parameters increases examining the data and their consequent interpretation becomes more difficult. To overcome such difficulties, numerous chemometric techniques have been introduced in environmental chemistry, such as Multivariate Data Analysis (MVDA), Principal Component Analysis (PCA) and Partial Least Squares Regression (PLSR). The use of the first technique in this work has been applied to the interpretation of the quality of Augusta bay, by measuring the concentration of numerous organic micropollutants, together with the classical water pollution parameters, in different sites and at different times. The MVDA has highlighted the difference between various sampling sites whose data were initially thought to be similar. Furthermore, it has allowed a choice of more significant parameters for future monitoring and more suitable sampling site locations.


Author(s):  
Sidra Amin ◽  
Amber R. Solangi ◽  
Dilawar Hassan ◽  
Nadir Hussain ◽  
Jamil Ahmed ◽  
...  

Background: In recent years, the occurrence and fate of environmental pollutants has been recognized as one of the emerging issues in environmental chemistry. A survey documented about a wide variety of these pollutants, which are often detected in our environment and these are major cause of shortened life spans and the global warming. These pollutants include toxic metal, pesticides, fertilizers, drugs and dyes released into soil and major water bodies. The presence of these contaminants causes major disturbance in eco-system’s balance. To tackle these issues many technological improvements are made to detect minute contaminations. The latest issue being answered by the scientists is the use of green nano materials as sensors which are economical, instant and give much better results at low concentrations and can be used for the field measurements resulting in no dangerous by-product that could lead to more environmental contamination. Nano materials are known for their wide band gap, enhanced physical and optical properties with option of tuneablity as per need, by optimizing certain parameters. They are proved to be good choice for analytical/optical sensors with high sensitivity. Objective: This review holds information about multiple methods that use green nanomaterials for the analytical assessment of environmental pollutants. UV-Vis spectrophotometry and electrochemical analysis using green and reproducible nanomaterials are the major focus of this review article. To date, there are number of spectrophotometric and electro chemical methods available that have been used for the detection of environmental pollutants such as toxic metals, pesticides and dyes. Conclusion: The use of nanomaterials can drastically change the detection limits due to having large surface area, strong catalytic properties, and tunable possibility. With the use of nano materials, lower than the marked limit of detection and limit of quantification were seen when compared with previously reported work. The used nano-materials could be washed, dried, and reused, which makes the methods more proficient, cost effective and environmentally friendly.


2018 ◽  
Vol 16 (4) ◽  
pp. 510
Author(s):  
Wai Kin Kee ◽  
Wing Hong Chan

<span>In this article, a four-LED based photometer, in which four LEDs are used as light sources, are demonstrated to be a useful instrument for the study of pollution problems caused by phenols and of their remediation by electrochemical degradation method and the iron (II) catalyzed homogeneous Fenton’s reaction. The fate of phenols can be monitored by the photometer via the 4-aminoantipyrine method. The results revealed that the latter method was a superior method to treat the phenolic compounds.</span>


2020 ◽  
Author(s):  
Mauricio Ormachea ◽  
◽  
Lizangela Huallpara ◽  
José Luis Aróstegui García ◽  
Prosun Bhattacharya

Sign in / Sign up

Export Citation Format

Share Document