scholarly journals HDPS-BPSO Based Predictive Maintenance Scheduling for Backlash Error Compensation in a Machining Center

Author(s):  
Zhe Li ◽  
Yi Wang ◽  
Kesheng Wang ◽  
Jingyue Li
2008 ◽  
Vol 33-37 ◽  
pp. 1307-1312
Author(s):  
Mutellip Ahmat ◽  
Wei Cheng ◽  
Li Zheng

In this study, the chief heat sources of the spindle system for the TH6350 Machining Center are analyzed, and an experimental system based on the virtual instruments technology is presented, thirty-two thermocouple sensors are set at the spindle system of the machining center to measure the thermal field, and five electric vortex sensors are used to measure the thermal error of the spindle by five-point method. The FEM modeling of the thermal deformation of the spindle system is built up by based of I-DEAS, the temperature field and the thermal deformation of it are calculated, and the calculated values of the model tallies with the experimental values.The researching results provide a theoretical foundation for the improving design􀋈temperature controlling and the error compensation to the machining center.


2012 ◽  
Vol 472-475 ◽  
pp. 3029-3034
Author(s):  
Peng Li ◽  
Ying Hu ◽  
Zi Ma

Related to the machining precision, especially for the middle and low end machining center, the positioning error is often considered as a major factor, which can be traditionally decreased by the pitch compensation function integrated in the CNC system. However, the function is just founded on that all of positioning errors remain constant in the machining process, and it is difficulty to meet the compensation needs in different machining condition. At the same time, it involves a mass of parameters that need professional manual correction. Therefore, the software error compensation method is put forward. Firstly, based on cubic spline interpolation, the error compensation model is designed through the processing of positioning error which is collected by the laser interferometer. Secondly, with the characteristics of G codes, the database is established for error compensation, which can effectively correct different machining G codes with enough error information. Finally, by the experiment and accuracy evaluation, results show that after the positioning error of machining center is compensated by the presented scheme, its precision is improved obviously.


1996 ◽  
Author(s):  
Herbert Lau ◽  
Quanhe Ma ◽  
Kam C. Lau ◽  
Youssef A. Hamidieh ◽  
Brij B. Seth ◽  
...  

2014 ◽  
Vol 945-949 ◽  
pp. 1669-1672
Author(s):  
Jun Sun ◽  
Xing Liu ◽  
Zhi Xuan Li

Aiming to deal with thermal error of NC machine tool which can cause reduce of machining accuracy, this paper uses an external error compensation which interacts with NC controllers and PMAC multi-axis and then revises the tool path by adding the error tested in real-time by PMAC card. The processing accuracy is improved eventually. This method can compensate machine geometric errors and thermal errors in real-time. Comparing with other methods of error preventing, this method is more effective and affordable.


Sign in / Sign up

Export Citation Format

Share Document