Study on Post-processing and Nonlinear Error Compensation Technology for Dual 5-axis Linkage NC Machining Center

2014 ◽  
Vol 7 (9) ◽  
pp. 109-120
Author(s):  
Yuhou Wu ◽  
Dehong Zhao ◽  
Li Ning ◽  
Sun Jing
Author(s):  
Shao-ying Ren ◽  
Yan-zhong Wang ◽  
Yuan Li

This article presents a method of design, manufacturing, and measuring S-gear. S-gear is a kind of gear whose tooth profile is an S-shaped curve. The sine (cosine) gear, cycloid gear, polynomial gear, and circular arc gear are all S-gears in essence. In the S-gear transmission, the concave surface of one gear and the convex surface of the other gear contact each other. Therefore, the power transmitted by S-gear is much larger than that of the convex-convex-contact involute gear. Some scholars have studied the characteristics of S-gear, but few have explored its manufacturing. In this article, the Numerical Control (NC) machining technology of S-gear is studied in detail for its industrial application. The polynomial curve is used to construct the tooth profile of the S-gear based on the Gear Meshing Theory. The mathematical model of polynomial S-gear is established, by which involute gear can be represented as a special S-gear. The steps of generating NC codes are described. Then, the S-gear sample is processed with an NC machining center. Finally, the sample is measured with a Coordinate Measuring Machine (CMM), and the measurement results show that the accuracy of the S-gear processed by the NC machining center reaches ISO6. This research provides a feasible approach for the design, manufacturing, and measuring of S-gear.


2013 ◽  
Vol 753-755 ◽  
pp. 1365-1368
Author(s):  
Guo Zheng Zhang ◽  
Yuan Zhi Zhou

To solve the problem that fixture planning of the batch valve-body part of car, the NC machining process of the batch valve-body parts based on the normal vector is analyzed in this paper. The different fixture planning of the valve-body part based on the capabilities of three-axis and four-axis and five-axis NC machining center (MC) is discussed. According to the questions that the feature of different machined position holes and faces of valve-body part on three-axis NC machining center, the multi-piece fixture planning and multi-position rotational fixture planning are designed. The results indicate that the proposed fixture planning can improve the machining productivity, which based on cabapility of three-axis NC machining center (MC).


2021 ◽  
Vol 19 (10) ◽  
pp. 101201
Author(s):  
Xin Yu ◽  
Shanshan Lai ◽  
Yuankun Liu ◽  
Wenjing Chen ◽  
Junpeng Xue ◽  
...  

2008 ◽  
Vol 33-37 ◽  
pp. 1307-1312
Author(s):  
Mutellip Ahmat ◽  
Wei Cheng ◽  
Li Zheng

In this study, the chief heat sources of the spindle system for the TH6350 Machining Center are analyzed, and an experimental system based on the virtual instruments technology is presented, thirty-two thermocouple sensors are set at the spindle system of the machining center to measure the thermal field, and five electric vortex sensors are used to measure the thermal error of the spindle by five-point method. The FEM modeling of the thermal deformation of the spindle system is built up by based of I-DEAS, the temperature field and the thermal deformation of it are calculated, and the calculated values of the model tallies with the experimental values.The researching results provide a theoretical foundation for the improving design􀋈temperature controlling and the error compensation to the machining center.


1989 ◽  
Vol 26 (03) ◽  
pp. 202-209
Author(s):  
Mark F. Nittel

This paper describes state-of-the-art manufacture of ship propeller blades with numerically controlled(NC) machining. A brief explanation of the rationale for NC machining is provided, followed by a discussion of the operating experience of a blade machining center over the past six years. Some of the unique considerations involved in the NC programming and machining processes are described along with some of the most common production problems. The factors leading to the company's decision to expand the blade machining center are discussed along with a description of the design and procurement of the new equipment and facilities. Tolerances achieved by NC machining and hand finishing are compared.


2012 ◽  
Vol 472-475 ◽  
pp. 3029-3034
Author(s):  
Peng Li ◽  
Ying Hu ◽  
Zi Ma

Related to the machining precision, especially for the middle and low end machining center, the positioning error is often considered as a major factor, which can be traditionally decreased by the pitch compensation function integrated in the CNC system. However, the function is just founded on that all of positioning errors remain constant in the machining process, and it is difficulty to meet the compensation needs in different machining condition. At the same time, it involves a mass of parameters that need professional manual correction. Therefore, the software error compensation method is put forward. Firstly, based on cubic spline interpolation, the error compensation model is designed through the processing of positioning error which is collected by the laser interferometer. Secondly, with the characteristics of G codes, the database is established for error compensation, which can effectively correct different machining G codes with enough error information. Finally, by the experiment and accuracy evaluation, results show that after the positioning error of machining center is compensated by the presented scheme, its precision is improved obviously.


2010 ◽  
Vol 44-47 ◽  
pp. 280-283
Author(s):  
Zhen Yu Zhao ◽  
Li Xin Huang ◽  
Yong Shan Xiao ◽  
Bai Liu

In the manufacturing industry, high speed milling plays a very important role. The paper introduced a number of essential core component of the key technologies in high speed machining center such as powerful computer numerical control systems, motion control card, post –processing method, processed trajectory control technology (Look Ahead) and high speed processing of programming. The speed control, post processing and look-ahead control are focused on considering, and the corresponding improved methods are brought forward.


Sign in / Sign up

Export Citation Format

Share Document