fem modeling
Recently Published Documents


TOTAL DOCUMENTS

414
(FIVE YEARS 82)

H-INDEX

23
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Nasireh Dayarian ◽  
Reza Jafari ◽  
Ali Khadem

This article presents a hybrid boundary element-finite element (BE–FE) method to solve the EEG forward problem and take advantages of both the boundary element method (BEM) and finite element method (FEM). Although realistic EEG forward problems with heterogeneous and anisotropic regions can be solved by FEM accurately, the FEM modeling of the brain with dipolar sources may lead to singularity. In contrast, the BEM can solve EEG forward problems with isotropic tissue regions and dipolar sources using a suitable integral formulation. This work utilizes both FEM and BEM strengths attained by dividing the regions into some homogeneous BE regions with sources and some heterogeneous and anisotropic FE regions. Furthermore, the BEM is applied for modeling the brain, including dipole sources and the FEM for other head layers. To validate the proposed method, inhomogeneous isotropic/anisotropic three– and four–layer spherical head models are studied. Moreover, a four&-layer realistic head model is investigated. Results for six different dipole eccentricities and two different dipole orientations are computed using the BEM, FEM, and hybrid BE–FE method together with statistical analysis and the related error criteria are compared. The proposed method is a promising new approach for solving realistic EEG forward problems.


2021 ◽  
Vol 8 (6) ◽  
pp. 888-896
Author(s):  
Juan Gabriel Rueda-Bayona ◽  
Laura Gil ◽  
Jose Manuel Calderón

The high development of the offshore industry for supporting new marine and renewable energy projects requires a constant improvement of methods for structure designing. Because recent studies warned that maximum environmental loads occur during low sea states and not during extreme sea states as recommend by the offshore standards (e.g., RP 2AWSD-2014), this study used measured wave and current data for analyzing that warning. The Colombian Caribbean coast was selected as the study area, and in situ ADCP data combined with Reanalysis and numerical data was used for identifying proper sea states for the analysis. Then, two low and one extreme sea states were selected and their associated current profiles were extracted, for providing input data for Computational Fluid Dynamics (CFD) and Finite Element Method (FEM) simulations to evaluate the effect of the hydrodynamic forces over a floating structure. The results showed that low sea states generated maximum loads and rotations in the floating structure, and the extreme sea states caused high-frequency vibrations that could provoke structural dynamics problems such as failures due to fatigue or sudden collapse by resonance and amplification.


2021 ◽  
Author(s):  
Zeeshan Tariq ◽  
Ayman AlNakhli ◽  
Abdulazeez Abdulraheem ◽  
Mohamed Mahmoud

Abstract Brownfields and depleting conventional resources of fossil fuel energy are not enough to fulfill the tremendously increasing energy demands around the globe. Unconventional oil and gas resources are creating a huge impact on the enhancement of the global economy. Tight rocks are usually located in deep and high-strength formations. In this study, numerical simulation results on a new thermochemical fracturing approach is presented. The new fracturing approach was implemented to reduce the breakdown pressure of the unconventional tight formations. The hydraulic fracturing experiments presented in this study were carried out on ultra-tight cement block samples. The permeability of the block samples was less than 0.005mD. Thermochemical fracturing was carried out by a thermochemical fluids that caused a rapid exothermic reaction which resulted in the instantaneous generation of heat and pressure. Different salts of nitrogen such as sodium nitrite and ammonium chloride were used as a thermochemical fluid. The instantaneous generation of the heat and pressure caused the creation of micro-cracks. The fracturing results revealed that the novel thermochemical fracturing was able to reduce the breakdown pressure in ultra-tight cement from 1095 psi to 705 psi. The reference breakdown pressure was recorded from the conventional fracturing technique. A finite element (FEM) analysis was conducted using commercial software ABAQUS. In FEM, two approaches were used to model the thermochemical fractures namely, cohesive zone modeling (CZM) and concrete damage plasticity models (CDP). The sensitivity analysis of peak pressure and time to reach the peak pressure is also presented in this study. The sensitivity analysis can help in better designing thermochemical fluids that could lead to the maximum generation of micro-cracks and multiple fractures.


2021 ◽  
Author(s):  
Fabiana Del Bono ◽  
Adrien Rapeaux ◽  
Danilo Demarchi ◽  
Timothy G. Constandinou

2021 ◽  
Vol 13 (20) ◽  
pp. 4054
Author(s):  
Fabio Pulvirenti ◽  
Francesca Silverii ◽  
Maurizio Battaglia

The Long Valley Caldera, located at the eastern edge of the Sierra Nevada range in California, has been in a state of unrest since the late 1970s. Seismic, gravity and geodetic data strongly suggest that the source of unrest is an intrusion beneath the caldera resurgent dome. However, it is not clear yet if the main contribution to the deformation comes from pulses of ascending high-pressure hydrothermal fluids or low viscosity magmatic melts. To characterize the nature of the intrusion, we developed a 3D finite element model which includes topography and crust heterogeneities. We first performed joint numerical inversions of uplift and Electronic Distance Measurement baseline length change data, collected during the period 1985–1999, to infer the deformation-source size, position, and overpressure. Successively, we used this information to refine the source overpressure estimation, compute the gravity potential and infer the intrusion density from the inversion of deformation and gravity data collected in 1982–1998. The deformation source is located beneath the resurgent dome, at a depth of 7.5 ± 0.5 km and a volume change of 0.21 ± 0.04 km3. We assumed a rhyolite compressibility of 0.026 ± 0.0011 GPa−1 (volume fraction of water between 0% and 30%) and estimated a reservoir compressibility of 0.147 ± 0.037 GPa−1. We obtained a density of 1856 ± 72 kg/m3. This density is consistent with a rhyolite melt, with 20% to 30% of dissolved hydrothermal fluids.


2021 ◽  
Vol 9 (10) ◽  
pp. 1068
Author(s):  
Anis Hasanpour ◽  
Denis Istrati ◽  
Ian Buckle

Field surveys in recent tsunami events document the catastrophic effects of large waterborne debris on coastal infrastructure. Despite the availability of experimental studies, numerical studies investigating these effects are very limited due to the need to simulate different domains (fluid, solid), complex turbulent flows and multi-physics interactions. This study presents a coupled SPH–FEM modeling approach that simulates the fluid with particles, and the flume, the debris and the structure with mesh-based finite elements. The interaction between the fluid and solid bodies is captured via node-to-solid contacts, while the interaction of the debris with the flume and the structure is defined via a two-way segment-based contact. The modeling approach is validated using available large-scale experiments in the literature, in which a restrained shipping container is transported by a tsunami bore inland until it impacts a vertical column. Comparison of the experimental data with the two-dimensional numerical simulations reveals that the SPH–FEM models can predict (i) the non-linear transformation of the tsunami wave as it propagates towards the coast, (ii) the debris–fluid interaction and (iii) the impact on a coastal structure, with reasonable accuracy. Following the validation of the models, a limited investigation was conducted, which demonstrated the generation of significant debris pitching that led to a non-normal impact on the column with a reduced contact area and impact force. While the exact level of debris pitching is highly dependent on the tsunami characteristics and the initial water depth, it could potentially result in a non-linear force–velocity trend that has not been considered to date, highlighting the need for further investigation preferably with three-dimensional models.


Electronics ◽  
2021 ◽  
Vol 10 (18) ◽  
pp. 2289
Author(s):  
Texar Javier Ramírez-Guzmán ◽  
Citlalli Jessica Trujillo-Romero ◽  
Raquel Martínez-Valdez ◽  
Lorenzo Leija-Salas ◽  
Arturo Vera-Hernández ◽  
...  

Bone cancer is rare in adults, the most affected persons by this disease are young people and children. The common treatments for bone cancer are surgery, chemotherapy, and targeted therapies; however, all of them have side-effects that decrease the patient’s quality of life. Thermotherapy is one of the most promising treatments for bone cancer; its main goal is to increase the tumor temperature to kill cancerous cells. Although some micro-coaxial antennas have been used to treat bone tumors, most of them are designed to treat soft tissue. Therefore, the purpose of this work is to analyze the thermal behavior of four micro-coaxial antennas specifically designed to generate thermal ablation in bone tissue to treat bone tumors, at 2.45 GHz. The proposed antennas were the metal-tip monopole (MTM), the choked metal-tip monopole (CMTM), the double slot (DS) and the choked double slot (CDS). The design and optimization of the antennas by using the Finite Element Method (FEM) allow to predict the optimal antenna dimensions and their performance when they are in contact with the affected biological tissues (bone, muscle, and fat). In the FEM model, a maximum power transmission was selected as the main parameter to choose the optimum antenna design, i.e., a Standing Wave Ratio (SWR) value around 1.2–1.5. The four optimized antennas were constructed and experimentally evaluated. The evaluation was carried out in multilayer phantoms (fat, muscle, cortical, and cancellous bone) and ex vivo porcine tissue at different insertion depths of the antennas. To fully evaluate the antennas performance, the standing wave ratio (SWR), power loss, temperature profiles, and thermal distributions were analyzed. In the experimentation, the four antennas were able to reach ablation temperatures (>60 °C) and the highest reached SWR was 1.7; the MTM (power loss around 16%) and the CDS (power loss around 6.4%) antennas presented the lowest SWR values depending on the antenna insertion depth, either in multilayer tissue phantom or in ex vivo tissue. These proposed antennas allow to obtain ablation temperatures with an input power of 5 W after 5 min of treatment; these values are lower than the ones reported in the literature.


Sign in / Sign up

Export Citation Format

Share Document