Stress–Strain Behaviors in Large Plastic Strain Ranges under Cyclic Loading

Author(s):  
Liang-Jiu Jia ◽  
Hanbin Ge
2020 ◽  
Vol 53 (2) ◽  
pp. 335-348
Author(s):  
Xiaohui Bian ◽  
Ahmed A. Saleh ◽  
Peter A. Lynch ◽  
Christopher H. J. Davies ◽  
Azdiar A. Gazder ◽  
...  

High-resolution in situ synchrotron X-ray diffraction was applied to study a cold-drawn and solution-treated 56Ni–44Ti wt% alloy subjected to uniaxial cyclic loading–unloading with incremental strains. The micro-mechanical behaviour associated with the partial and repeated B2↔B19′ phase transformation at the centre of the sample gauge length was studied with respect to the macroscopic stress–strain response. The lattice strains of the (110)B2 and different B19′ grain families are affected by (i) the transformation strain, the load-bearing capacity of both phases and the strain continuity maintained at/near the B2–B19′ interfaces at the centre of the gauge length, and (ii) the extent of transformation along the gauge length. With cycling and incremental strains (i) the elastic lattice strain and plastic strain in the remnant (110)B2 grain family gradually saturate at early cycles, whereas the plastic strain in the B19′ phase continues to increase. This contributes to accumulation of residual strains (degradation in superelasticity), greater non-linearity and change in the shape of the macroscopic stress–strain curve from plateau type to curvilinear elastic. (ii) The initial 〈111〉B2 fibre texture transforms to [120]B19′, [130]B19′, [150]B19′ and [010]B19′ orientations. Further increase in the applied strain with cycling results in the development of [130]B19′, [102]B19′, [102]B19′, [100]B19′ and [100]B19′ orientations.


1997 ◽  
Vol 1 (1) ◽  
pp. 39-46 ◽  
Author(s):  
Zuyan Shen ◽  
Bao Dong

Based on the stress-strain hysteretic curves obtained from the tests on steel under cyclic loading, a cumulative damage mechanics model using plastic strain as a basic variable is proposed in the paper, in which the effects of damage on the modulus of elasticity and the yielding stress of steel are taken into consideration. The material parameters of the model are determined according to the experimental hysteretic curves. Comparison of the theoretical hysteretic curves and repeated tensile stress-strain curves obtained from the suggested cumulative damage mechanics model with those from the tests shows that the model suggested in this paper agrees very well with the tested results.


2020 ◽  
Vol 36 (2) ◽  
pp. 167-176 ◽  
Author(s):  
Daniele Barbera ◽  
Haofeng Chen

ABSTRACTStructural integrity plays an important role in any industrial activity, due to its capability of assessing complex systems against sudden and unpredicted failures. The work here presented investigates an unexpected new mechanism occurring in structures subjected to monotonic and cyclic loading at high temperature creep condition. An unexpected accumulation of plastic strain is observed to occur, within the high-temperature creep dwell. This phenomenon has been observed during several full inelastic finite element analyses. In order to understand which parameters make possible such behaviour, an extensive numerical study has been undertaken on two different notched bars. The notched bar has been selected due to its capability of representing a multiaxial stress state, which is a practical situation in real components. Two numerical examples consisting of an axisymmetric v-notch bar and a semi-circular notched bar are considered, in order to investigate different notches severity. Two material models have been considered for the plastic response, which is modelled by both Elastic-Perfectly Plastic and Armstrong-Frederick kinematic hardening material models. The high-temperature creep behaviour is introduced using the time hardening law. To study the problem several results are presented, as the effect of the material model on the plastic strain accumulation, the effect of the notch severity and the mesh element type and sensitivity. All the findings further confirm that the phenomenon observed is not an artefact but a real mechanism, which needs to be considered when assessing off-design condition. Moreover, it might be extremely dangerous if the cyclic loading condition occurs at such a high loading level.


2018 ◽  
Vol 145 ◽  
pp. 05003
Author(s):  
Anna Povolotskaya ◽  
Eduard Gorkunov ◽  
Sergey Zadvorkin ◽  
Igor Veselov

The paper reports results of magnetic measurements made on samples of the 12GB pipe steel (strength group X42SS) designed for producing pipes to be used in media with high hydrogen sulphide content, both in the initial state and after exposure to hydrogen sulphide, for 96, 192 and 384 hours under uniaxial elastic-plastic tension. At the stage of elastic deformation there is a unique correlation between the coercive force measured on a minor hysteresis loop in weak fields and tensile stress, which enables this parameter to be used for the evaluation of elastic stresses in pipes made of the 12 GB pipe steel under different conditions, including a hydrogen sulphide containing medium. The effect of the value of preliminary plastic strain, viewed as the initial stress-strain state, on the magnetic behaviour of X70 pipe steels under elastic tension and compression is studied. Plastic strain history affects the magnetic behaviour of the material during subsequent elastic deformation since plastic strain induces various residual stresses, and this necessitates taking into account the initial stress-strain state of products when developing magnetic techniques for the determination of their stress-strain parameters during operation.


2018 ◽  
Vol 165 ◽  
pp. 15004 ◽  
Author(s):  
Jochen Tenkamp ◽  
Alexander Koch ◽  
Stephan Knorre ◽  
Ulrich Krupp ◽  
Wilhelm Michels ◽  
...  

Aluminium alloys are promising candidates for energy-and cost-efficient components in automotive and aerospace industries, due to their excellent strength-to-weight ratio and relatively low cost compared to titanium alloys. As modern cast processing and post-processing, e.g. hot isostatic pressing, result in decreased frequency and size of defects, the weakest link depends on microstructural characteristics, e.g. secondary dendrite arm spacing (SDAS), Si eutectic morphology and α-Al solid solution hardness. Hereby, fatigue investigations of the effect of the microstructure characteristics on the cyclic stress-strain behaviour as well as fatigue mechanisms in the low cycle and high cycle fatigue regime are performed. For this purpose, samples of the aluminium cast alloy EN AC-AlSi7Mg0.3 with different Si eutectic morphology and α-Al solid solution hardness were investigated. To compare the monotonic and cyclic stress-strain curves, quasistatic tensile tests and incremental step tests were performed on two microstructure conditions. The results show that the cyclic loading leads to a hardening of the material compared to monotonic loading. Based on damage parameter Woehler curves, it is possible to predict the damage progression and fatigue life for monotonic and cyclic loading in hypo-eutectic Al-Si-Mg cast alloys by one power law.


Vestnik MGSU ◽  
2016 ◽  
pp. 28-38
Author(s):  
Ilshat Talgatovich Mirsayapov

The author offer transforming the diagram of ideal elastic-plastic deformations for the description of the stress-strain state of embedment of reinforcement behind a critical inclined crack at repeatedly repeating loadings. The endurance limit of the adhesion between concrete and reinforcement and its corresponding displacements in case of repeated loadings are accepted as the main indicators. This adhesion law is the most appropriate for the description of physical and mechanical phenomena in the contact zone in case of cyclic loading, because it simply and reliably describes the adhesion mechanism and the nature of the deformation, and greatly simplifies the endurance calculations compared to the standard adhesion law. On the basis of this diagram the author obtained the equations for the description of the distribution of pressures and displacements after cyclic loading with account for the development of deformations of cyclic creep of the concrete under the studs of reinforcement.


Author(s):  
Xian-Kui Zhu ◽  
Brian N. Leis

Work hardening and Bauschinger effects on plastic deformation and fatigue life for a beam and an elbow under cyclic loading are examined using finite element analysis (FEA). Three typical material plastic hardening models, i.e. isotropic, kinematic and combined isotropic/kinematic hardening models are adopted in the FEA calculations. Based on the FEA results of cyclic stress and strain at a critical location and using an energy-based fatigue damage parameter, the fatigue lives are predicted for the beam and elbow. The results show that (1) the three material hardening models determine similar stress at the critical location with small differences during the cyclic loading, (2) the isotropic model underestimates the cyclic plastic strain and overestimates the fatigue life, (3) the kinematic model overestimates the cyclic plastic strain and underestimates the fatigue life, and (4) the combined model predicts the intermediate cyclic plastic strain and reasonable fatigue life.


Sign in / Sign up

Export Citation Format

Share Document