Stress–Strain Behaviors in Large Plastic Strain Ranges under Monotonic Loading

Author(s):  
Liang-Jiu Jia ◽  
Hanbin Ge
2018 ◽  
Vol 145 ◽  
pp. 05003
Author(s):  
Anna Povolotskaya ◽  
Eduard Gorkunov ◽  
Sergey Zadvorkin ◽  
Igor Veselov

The paper reports results of magnetic measurements made on samples of the 12GB pipe steel (strength group X42SS) designed for producing pipes to be used in media with high hydrogen sulphide content, both in the initial state and after exposure to hydrogen sulphide, for 96, 192 and 384 hours under uniaxial elastic-plastic tension. At the stage of elastic deformation there is a unique correlation between the coercive force measured on a minor hysteresis loop in weak fields and tensile stress, which enables this parameter to be used for the evaluation of elastic stresses in pipes made of the 12 GB pipe steel under different conditions, including a hydrogen sulphide containing medium. The effect of the value of preliminary plastic strain, viewed as the initial stress-strain state, on the magnetic behaviour of X70 pipe steels under elastic tension and compression is studied. Plastic strain history affects the magnetic behaviour of the material during subsequent elastic deformation since plastic strain induces various residual stresses, and this necessitates taking into account the initial stress-strain state of products when developing magnetic techniques for the determination of their stress-strain parameters during operation.


Author(s):  
Don Metzger

Abstract Bending capacity in excess of the load required to cause yielding is due to a combination of work hardening and the effect of the plastic zone spreading toward the neutral axis. For materials of sufficiently high ductility, a fully developed plastic zone is achieved and the bulk of the section is stressed beyond yield. For lower ductility materials, failure may occur prior to full development of the plastic zone such that only a fraction of the cross section is at or above the yield stress. In such cases, the relationship between applied load and maximum bending stress becomes sensitive to the shape of the stress-strain curve near the yield point. This relationship is examined for straight and curved bars of rectangular and trapezoidal cross-section for tensile stress-strain curves characterized by nonlinear functions. The stress distribution as a function of applied load is determined analytically by enforcing moment equilibrium across the section. The strain distribution is determined through the classical condition of “planes remain plane” during deformation. The solutions provide analytically smooth load curves such that maximum stress can be directly plotted as a function of applied load. These plots exhibit three distinct regimes of response: 1) elastic, 2) development of plastic zone, and 3) fully developed plastic zone. Since the response is analytically smooth, the detailed relationship through the knee of the tensile curve can be examined. The results indicate that bending capacity is influenced significantly by the development of small amounts of plastic strain prior to reaching a yield point defined by the usual 0.2% plastic strain offset method. The results also show how loss of ductility with respect to tensile elongation translates into reduced bending load capacity in a non-linear relationship.


2020 ◽  
Vol 975 ◽  
pp. 203-207
Author(s):  
Shih Tsung Hsu ◽  
Wen Chi Hu ◽  
Yu Heng Lin ◽  
Zhuo Ling

Constitutive models for soils are usually adopted in numerical method to analyze the behavior of geotechnical structures. This study performs a series of consolidated-undrained triaxial tests to establish the stress-strain curve of clay. A constitutive model that considers continuous strain hardening-softening is proposed based on the results of triaxial tests. Triaxial test results reveal that undrained shear strength linearly increases with an increase in consolidated pressure , the normalized undrained shear strength is about 0.52 not only for this study but also for the other two cases around Taipei Basin. Due to undrained condition, an associated flow rule between plastic strain increment and stress tensor is adopted. As accumulative plastic strain or/and consolidated pressure change, the mobilized undrained shear strength also changes. All parameters needed for the proposed model can be expressed as a function of undrained shear strength Su, The mobilized undrained shear strength for the proposed model during strain hardening-softening can be in term of accumulative plastic strain. This model can calculate the stress-strain curves of clayed soils accurately.


2009 ◽  
Vol 131 (6) ◽  
Author(s):  
M. Turski ◽  
M. C. Smith ◽  
P. J. Bouchard ◽  
L. Edwards ◽  
P. J. Withers

Application of electronic speckle pattern interferometry (ESPI) is described to measure the spatial variation in monotonic tensile stress-strain properties along “cross-weld” specimens machined from a stainless steel three-pass welded plate. The technique, which could also be done with digital image correlation, was applied to quantify how the material 0.2%, 1%, 2%, 5%, 10%, and 20% proof stress varied with distance from the center-line of the weldment for parent and weld material associated with the first and final passes. The stress-strain curves measured by the ESPI method correlated closely with stress-strain data measured using conventional test specimens. The measured results are consistent with the hypothesis that thermo-mechanical cycles associated with the welding process work harden previously deposited (single-pass) weld metal and the surrounding parent material. The stress-strain response of the heat affected zone adjacent to the first weld pass is consistent with an accumulated (equivalent monotonic) plastic strain of 6.5% and that of the first pass weld bead was consistent with an accumulated plastic strain of approximately 4% greater than the state of the final pass weld metal.


Author(s):  
Andrew Cosham ◽  
Naoto Hagiwara ◽  
Naoki Fukuda ◽  
Tomoki Masuda

New and existing pipelines can be subjected to high plastic strains. Denting a pipeline causes permanent plastic deformation. Onshore pipelines subject to subsidence, frost heave or earthquake loading can experience significant plastic strain during service. Offshore pipelines that are reeled prior to laying, or are laid in deep water, or are operating at high temperatures and high pressures, can experience significant plastic strain both prior to, and during, service. Experimental studies have indicated that pre-strain (permanent plastic deformation) has a detrimental effect on the fracture toughness of steel; it reduces the resistance to crack initiation, reduces the resistance to crack growth, and increases the transition temperature. Consequently, there is a need for a thorough understanding of the effect of pre-strain on the fracture toughness of line pipe. Accordingly, a theoretical model for predicting the effect of tensile pre-strain on the ductile fracture toughness has been developed using the local approach. The effect of pre-strain is expressed in terms of an equation for the ratio of the fracture toughness of the pre-strained material to that of the virgin (not pre-strained) material. The model indicates that the effect of tensile pre-strain on the material’s fracture toughness can be characterised in terms of the effect of pre-strain on the stress-strain characteristics of the material, the critical fracture strain for a stress state corresponding to that during pre-strain, and several parameters that relate to the conditions for ductile fracture (or cleavage fracture). The implications of the model are that it may be possible to estimate the reduction in toughness caused by pre-strain simply from a full stress-strain curve of the virgin material. The model has been validated against the results of crack tip opening displacement (CTOD) tests conducted by Tokyo Gas on two line pipe steels subject to uniaxial tensile pre-strain. It is shown that the predictions and trends of the theoretical model are in broad agreement with the test results.


1998 ◽  
Vol 242 (1-2) ◽  
pp. 137-140 ◽  
Author(s):  
Z.Y Liu ◽  
G.X Liang ◽  
E.D Wang ◽  
Z.R Wang

2009 ◽  
Vol 2009.58 (0) ◽  
pp. 31-32
Author(s):  
Minoru YAMASHITA ◽  
Joji SATO ◽  
Toshio HATTORI

1977 ◽  
Vol 99 (3) ◽  
pp. 432-443 ◽  
Author(s):  
C. E. Jaske

This program was undertaken to develop isothermal low-cycle fatigue information for AISI 1010 steel in air. Such information is needed to help predict acceptable conditions for equipment and structures operating at elevated temperatures. Tensile properties and cyclic stress-strain behavior were also developed. For lives between 103 and 106 cycles to failure, fatigue curves were developed at 70, 400, 600, 800, 1000, and 1200°F (21, 204, 316, 427,538, and 649°C). Data for these curves were obtained from constant-amplitude, fully reversed strain-cycling tests of axially loaded specimens. Results from the same experiments were used to define cyclic stress-strain curves at each of the above temperatures. Dynamic strain aging caused a maximum amount of cyclic hardening at 600°F (316°C). In terms of stress amplitude, the maximum fatigue strength was at 600°F (316°C). In terms of either total strain range or plastic strain range, the maximum fatigue resistance was at 400°F (204°C). At temperaures above 600°F (316°C), fatigue resistance decreased as temperature increased. Tensile hold periods caused a significant reduction in cyclic life at 800 and 1000°F (427 and 538°C) but had no noticeable effect on cyclic life at 600°F (316°C). Fatigue resistance was quantified in terms of power functions relating fatigue life to both plastic strain range and stress amplitude, and cyclic stress-strain response was quantified in terms of a power function relating stress amplitude to plastic strain amplitude. The method of strain-range partitioning provided good cyclic life predictions for the limited number of tensile hold-time experiments, although other types of hold periods were not evaluated.


Sign in / Sign up

Export Citation Format

Share Document