pipe steels
Recently Published Documents


TOTAL DOCUMENTS

272
(FIVE YEARS 47)

H-INDEX

16
(FIVE YEARS 3)

Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7860
Author(s):  
Olha Zvirko ◽  
Oleksandr Tsyrulnyk ◽  
Sebastian Lipiec ◽  
Ihor Dzioba

In the research, the corrosion and mechanical properties, as well as susceptibility to hydrogen embrittlement, of two casing pipe steels were investigated in order to assess their serviceability in corrosive and hydrogenating environments under operation in oil and gas wells. Two carbon steels with different microstructures were tested: the medium carbon steel (MCS) with bainitic microstructure and the medium-high carbon steel (MHCS) with ferrite–pearlite microstructure. The results showed that the corrosion resistance of the MHCS in CO2-containing acid chloride solution, simulating formation water, was significantly lower than that of the MCS, which was associated with microstructure features. The higher strength MCS with the dispersed microstructure was less susceptible to hydrogen embrittlement under preliminary electrolytic hydrogenation than the lower strength MHCS with the coarse-grained microstructure. To estimate the embrittlement of steels, the method of the FEM load simulation of the specimens with cracks was used. The constitutive relations of the true stress–strain of the tested steels were defined. The stress and strain dependences in the crack tip were calculated. It was found that the MHCS was characterized by the lower plasticity on the stage of the neck formation of the specimen and the lower fracture toughness than the other one. The obtained results demonstrating the limitations of the usage of casing pipes made of the MHCS with the coarse-grained ferrite/pearlite microstructure in corrosive and hydrogenating environments were discussed.


2021 ◽  
Vol 2021 (10) ◽  
pp. 1275-1283
Author(s):  
M. V. Chukin ◽  
V. M. Salganik ◽  
A. B. Moller ◽  
D. N. Chikishev

Author(s):  
Юрий Григорьевич Матвиенко ◽  
Дмитрий Александрович Кузьмин ◽  
Владимир Васильевич Зацаринный ◽  
Максим Сергеевич Пугачев ◽  
Владимир Вячеславович Потапов

Проведен анализ влияния коэффициентов вариации сопротивления материала разрушению и коэффициентов вариации нагрузки на вероятность разрушения и, следовательно, на коэффициенты запаса по характеристикам сопротивления материала разрушению при заданных показателях вероятности разрушения. Снижение неопределенности в условиях нагружения и повышение качества материала позволяют снизить коэффициенты запаса по пределу текучести и вязкости разрушения для заданных целевых показателей безопасности. На примере трубных сталей марок Ст 20 и 16ГС показана возможность снижения коэффициента запаса по пределу текучести до значений n = 1,45 при коэффициенте вариации нагрузки 0,1 и сохранении целевого показателя безопасности в терминах вероятности разрушения на уровне 10. Возможность снижения коэффициентов запаса по пределу текучести и вязкости разрушения при заданных целевых показателях безопасности в терминах вероятности разрушения позволяет оптимизировать металлоемкость и максимальные допустимые давления в эксплуатируемых трубопроводах. The analysis of the influence of the coefficients of variation of the material resistance and the coefficients of the load variation on the probability of failure as well as on the safety factors for the characteristics of the material resistance to failure has been done at given indicators of the probability of failure. Reducing uncertainty under loading conditions and improving material quality allow reducing the safety factors against fracture and collapse for given targets safety. Using the example of pipe steels of grades St 20 and 16GS, it seems possible to reduce the safety factor against collapse up to 1.45 with a load variation coefficient of 0.1 and maintaining the safety target in terms of the fracture probability at the level of 10. The possibility of reducing the safety factors against collapse and fracture at the given target safety indicators in terms of the fracture probability allows optimizing the metal consumption and the maximum allowable pressures in the operating pipelines.


Author(s):  
P. V. Shilyaev ◽  
S. V. Denisov ◽  
P. A. Stekanov ◽  
O. V. Sych ◽  
E. I. Khlusova ◽  
...  

In view of arising needs of Russian oil and gas sectors, elaboration and implementation into series production competi­tive pipe products became an actual task for domestic enterprises of metallurgical industry. Generalized results of elaboration of chemical compositions and automated technologies of sheet rolled stock of new generation production from low-alloyed pipe steels of various strength classes at PJSC MMK presented. It was shown that the selected chemical compositions ensure forming finedispersed ferrite-bainite structure with bainite of granular morphology in a wide range of cooling rates. The elaborated technological modes of sheet rolled stock production from pipe steels stipulate for elimination considerable growth of austenite grain at heating before the rolling, refinement of austenite grains due to recrystallization processes, forming of extensive subgrain structure of austenite at plastic deformation, forming disperse structures during phase transformation in the process of controlled accelerated cooling; forming of extensive fragmented structure in а-phase. The level of strength, tough-plastic properties and resistance against brittle destruction (based on results of tests with a falling weight with determination of tough component share in the break of full-thickness samples) of sheet rolled stock of pipe steels with various chemical composition of PJSC MMK production was demonstrated. Results of study of tests the sheet rolled stock of high-strength steels for pipes of large diameter presented. Objects of the elaborated pipe steels implementation indicated.


2021 ◽  
Author(s):  
Nicolas Romualdi ◽  
Matthias Militzer ◽  
Warren Poole ◽  
Robert Lazor ◽  
Laurie Collins

2021 ◽  
Vol 2021 (7) ◽  
pp. 864-873
Author(s):  
A. Yu. Em ◽  
O. A. Komolova ◽  
A. M. Pogodin ◽  
K. V. Grigorovich

Sign in / Sign up

Export Citation Format

Share Document