An ANN Based Approach for Software Fault Prediction Using Object Oriented Metrics

Author(s):  
Rajdeep Kaur ◽  
Sumit Sharma
2007 ◽  
Vol 49 (5) ◽  
pp. 483-492 ◽  
Author(s):  
S. Kanmani ◽  
V. Rhymend Uthariaraj ◽  
V. Sankaranarayanan ◽  
P. Thambidurai

2014 ◽  
Vol 2014 ◽  
pp. 1-15 ◽  
Author(s):  
Yeresime Suresh ◽  
Lov Kumar ◽  
Santanu Ku. Rath

Experimental validation of software metrics in fault prediction for object-oriented methods using statistical and machine learning methods is necessary. By the process of validation the quality of software product in a software organization is ensured. Object-oriented metrics play a crucial role in predicting faults. This paper examines the application of linear regression, logistic regression, and artificial neural network methods for software fault prediction using Chidamber and Kemerer (CK) metrics. Here, fault is considered as dependent variable and CK metric suite as independent variables. Statistical methods such as linear regression, logistic regression, and machine learning methods such as neural network (and its different forms) are being applied for detecting faults associated with the classes. The comparison approach was applied for a case study, that is, Apache integration framework (AIF) version 1.6. The analysis highlights the significance of weighted method per class (WMC) metric for fault classification, and also the analysis shows that the hybrid approach of radial basis function network obtained better fault prediction rate when compared with other three neural network models.


2021 ◽  
Vol 7 ◽  
pp. e563
Author(s):  
Syed Rashid Aziz ◽  
Tamim Ahmed Khan ◽  
Aamer Nadeem

Software Fault Prediction (SFP) assists in the identification of faulty classes, and software metrics provide us with a mechanism for this purpose. Besides others, metrics addressing inheritance in Object-Oriented (OO) are important as these measure depth, hierarchy, width, and overriding complexity of the software. In this paper, we evaluated the exclusive use, and viability of inheritance metrics in SFP through experiments. We perform a survey of inheritance metrics whose data sets are publicly available, and collected about 40 data sets having inheritance metrics. We cleaned, and filtered them, and captured nine inheritance metrics. After preprocessing, we divided selected data sets into all possible combinations of inheritance metrics, and then we merged similar metrics. We then formed 67 data sets containing only inheritance metrics that have nominal binary class labels. We performed a model building, and validation for Support Vector Machine(SVM). Results of Cross-Entropy, Accuracy, F-Measure, and AUC advocate viability of inheritance metrics in software fault prediction. Furthermore, ic, noc, and dit metrics are helpful in reduction of error entropy rate over the rest of the 67 feature sets.


Sign in / Sign up

Export Citation Format

Share Document