Automated Road Surface Condition Monitoring System Using Machine Vision Technology

Author(s):  
K. Sujatha ◽  
A. Ganesan ◽  
V. Karthikeyan ◽  
P. Sai Krishna ◽  
Shaik Shafiya ◽  
...  
Author(s):  
Adham Mohamed ◽  
Mohamed Mostafa M. Fouad ◽  
Esraa Elhariri ◽  
Nashwa El-Bendary ◽  
Hossam M. Zawbaa ◽  
...  

Author(s):  
Kang Li ◽  
James A. Misener ◽  
Karl Hedrick

This paper presents an on-board road condition monitoring system developed for the safety application in Vehicle Infrastructure Integration (VII) project. The system equipped on the so-called probe vehicle is able to continuously evaluate road surface in terms of slipperiness and coarseness. Road surface is classified into four grades using stock mobile sensors and GPS speed-based measurements. The task of distinguishing slippery extents of road surfaces was treated as a "pattern-recognition" problem based on experimental results such that road surfaces can be classified into three slip levels, normal (μmax ≥0.5), slippery (0.3≥μmax <0.5), and very slippery (μmax <0.3) provided enough excitation. To distinguish rough road surfaces like gravel roads from normal asphalt roads, a separate classifier making use of a filterbank for analyzing wheel speed signal was implemented. Experimental results demonstrate the feasibility of this road condition monitoring system for detecting slippery and rough road surfaces in close to real-time. Once a slippery road condition is detected by the probe vehicle, a warning message with accurate GPS position can be transmitted from the probe vehicle to road side equipment (RSE) and further be relayed to following vehicles as well as traffic management center (TMC) via Dedicated Short Range Communication (DSRC); hence the safety of road users can be improved with the aid of this cooperative or VII active safety system.


Materials ◽  
2018 ◽  
Vol 11 (10) ◽  
pp. 1977 ◽  
Author(s):  
Wei-Heng Sun ◽  
Syh-Shiuh Yeh

This study uses the machine vision method to develop an on-machine turning tool insert condition monitoring system for tool condition monitoring in the cutting processes of computer numerical control (CNC) machines. The system can identify four external turning tool insert conditions, namely fracture, built-up edge (BUE), chipping, and flank wear. This study also designs a visual inspection system for the tip of an insert using the surrounding light source and fill-light, which can be mounted on the turning machine tool, to overcome the environmental effect on the captured insert image for subsequent image processing. During image capture, the intensity of the light source changes to ensure that the test insert has appropriate surface and tip features. This study implements outer profile construction, insert status region capture, insert wear region judgment, and calculation to monitor and classify insert conditions. The insert image is then trimmed according to the vertical flank, horizontal blade, and vertical blade lines. The image of the insert-wear region is captured to monitor flank or chipping wear using grayscale value histogram. The amount of wear is calculated using the wear region image as the evaluation index to judge normal wear or over-wear conditions. On-machine insert condition monitoring is tested to confirm that the proposed system can judge insert fracture, BUE, chipping, and wear. The results demonstrate that the standard deviation of the chipping and amount of wear accounts for 0.67% and 0.62%, of the average value, respectively, thus confirming the stability of system operation.


Sign in / Sign up

Export Citation Format

Share Document