road surface
Recently Published Documents


TOTAL DOCUMENTS

1761
(FIVE YEARS 540)

H-INDEX

38
(FIVE YEARS 6)

2022 ◽  
Vol 1 (1) ◽  
pp. 63-71
Author(s):  
Vladimir Pryadkin ◽  
Artem Artemov ◽  
Pavel Kolyadin ◽  
A. Kolcov

The article presents a mathematical model of the destructive effect of a wide-profile tire on the roadway. The mathematical model makes it possible to adequately reproduce the effect of a wide-profile tire on the road surface, taking into account the load and parameters of the tire, as well as the structure of the road surface and the temperature state.


2022 ◽  
Vol 19 (4) ◽  
pp. 34-39
Author(s):  
I. O. Chernyaev ◽  
S. A. Evtyukov

 Developments in adaptive systems for maintenance and repair of automotive vehicles set the task of monitoring the conditions of their operation. One of the main factors determining these conditions is the type of road surface.The article describes the results of identification of the type (and condition) of the road surface obtained by theoretical and experimental methods based on the analysis of vertical accelerations recorded on the vehicle body.The purpose of research was to provide a possibility of continuous monitoring of the type of road surface on which a vehicle is driving, with the subsequent application of the obtained data to correct maintenance intervals. The results of experiments have shown the dependence of the vertical acceleration of the body on the micro-profile of the road surface. The described experimentally obtained profiles of vertical accelerations refer to different types of road surface in different conditions. For quantitative assessment, it is proposed to calculate the average level of accelerations as an integral average over a certain time interval.The results of the experiments have allowed to substantiate the empirical dependence of the average level of accelerations on speed of a vehicle. Based on this dependence, a method is proposed for recalculating the current values of the average levels of accelerations obtained at different speeds into values adjusted to the base speed to ensure the possibility of their comparison.It is shown that based on the values of average acceleration levels obtained through operation monitoring regarding a previously known type of road surface, it is possible to determine its condition. A short algorithm is formulated for practical implementation and assessment of road conditions of traffic flows. As for hardware, it is proposed not to equip a vehicle with additional sensors but to use operational standard accelerometers as part of in-vehicle emergency call systems, e.g., ERA-GLONASS equipment units. 


2022 ◽  
Vol 11 (1) ◽  
pp. 43
Author(s):  
Calimanut-Ionut Cira ◽  
Martin Kada ◽  
Miguel-Ángel Manso-Callejo ◽  
Ramón Alcarria ◽  
Borja Bordel Bordel Sanchez

The road surface area extraction task is generally carried out via semantic segmentation over remotely-sensed imagery. However, this supervised learning task is often costly as it requires remote sensing images labelled at the pixel level, and the results are not always satisfactory (presence of discontinuities, overlooked connection points, or isolated road segments). On the other hand, unsupervised learning does not require labelled data and can be employed for post-processing the geometries of geospatial objects extracted via semantic segmentation. In this work, we implement a conditional Generative Adversarial Network to reconstruct road geometries via deep inpainting procedures on a new dataset containing unlabelled road samples from challenging areas present in official cartographic support from Spain. The goal is to improve the initial road representations obtained with semantic segmentation models via generative learning. The performance of the model was evaluated on unseen data by conducting a metrical comparison where a maximum Intersection over Union (IoU) score improvement of 1.3% was observed when compared to the initial semantic segmentation result. Next, we evaluated the appropriateness of applying unsupervised generative learning using a qualitative perceptual validation to identify the strengths and weaknesses of the proposed method in very complex scenarios and gain a better intuition of the model’s behaviour when performing large-scale post-processing with generative learning and deep inpainting procedures and observed important improvements in the generated data.


2022 ◽  
Vol 4 (6) ◽  
pp. 48-68
Author(s):  
S. Plehanova ◽  
N. Vinogradova

the advantage of the equality indicator is the relative simplicity of definition and the possibility of periodic moni-toring. According to the equality indicator, it is possible to assign repairs and predict the service life, assess the condition of the road surface. Experimental studies have proved that there is a connection between the evenness of the coating and the strength of the pavement, which opens up the possibility of determining the structural strength of non-rigid pavement, which provides a given evenness of the coating for the last year of operation be-fore major repairs. The question of assessing the impact of the unevenness of the road surface on the processes of development and accumulation of deformations, changes in the evenness of the coating during operation remain largely open. This is due to the multifactorial nature of the problem of predicting the equality of coverage, so it is advisable to use approaches based on direct measurement methods. Most of the existing models of interaction of a pneumatic or rigid wheel with a coating are designed for problems of pavement mechanics or car theory, therefore they cannot be unambiguously applied to determine the value of the dynamism coefficient. A significant disad-vantage of these solutions is insufficient consideration of the deformative properties (modulus of elasticity) of the pavement.


Author(s):  
Gerrit J Jordaan ◽  
Wynand J vdM Steyn

: Nanotechnology options to road surface maintenance offers several advantages compared to traditionally used materials. The small particle sizer of hydrophobic Nano-Silane modified Nano-Polymers (NSNP) enables these nanotechnology products to deeply penetrate existing road surfaces, sealing micro-cracks and render surfacings to be water-resistant for extended periods of time. In comparison, traditionally used products contain minimum partial sizes of about 1 – 5 microns, that provide a superficial protection that wears off in a relatively short period of time. These traditional products are often associated with vehicle contamination while drying and requires the re-instatement of road markings. None of these disadvantages are associated with applicable NSNP technologies that are quick drying, with no vehicle contamination risks and is equivalent to a “clear-seal” requiring no reinstatement of road markings. In a similar vein, pot-hole repairs can be done using applicable, easy to use, pre-packed and treated pot-hole repair kits that are water-repellent and quick-drying at a fraction of the costs of conventional cold-mix products. Resurfacing using NME binder slurries can be done labour-intensively on a pre-treated NSNP surfacing, restoring cracked surfacing and providing a water-resistant long-lasting protective layer without the removal of existing cracked areas. The implementation of nanotechnology solutions for road surface maintenance operations is directly associated with ease of use, labour-intensive operations, prevention of considerable deterioration in riding quality due to removal and manual re-instatement of cracked surfaces, time and cost savings and a reduction in the risk of water damage to the sub-structure. TRANSLATE with x English ArabicHebrewPolish BulgarianHindiPortuguese CatalanHmong DawRomanian Chinese SimplifiedHungarianRussian Chinese TraditionalIndonesianSlovak CzechItalianSlovenian DanishJapaneseSpanish DutchKlingonSwedish EnglishKoreanThai EstonianLatvianTurkish FinnishLithuanianUkrainian FrenchMalayUrdu GermanMalteseVietnamese GreekNorwegianWelsh Haitian CreolePersian TRANSLATE with COPY THE URL BELOW Back EMBED THE SNIPPET BELOW IN YOUR SITE Enable collaborative features and customize widget: Bing Webmaster Portal Back


2022 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Koki Taniguchi ◽  
Satoshi Kubota ◽  
Yoshihiro Yasumuro

Purpose The purpose of this study is to propose a method for vulnerable pedestrians to visualize potential obstacles on sidewalks. In recent years, the number of vulnerable pedestrians has been increasing as Japanese society has aged. The number of wheelchair users is also expected to increase in the future. Currently, barrier-free maps and street-view applications can be used by wheelchair users to check possible routes and the surroundings of their destinations in advance. However, identifying physical barriers that pose a threat to vulnerable pedestrians en route is often difficult. Design/methodology/approach This study uses photogrammetry to create a digital twin of the three-dimensional (3D) geometry of the existing walking space by collecting photographic images taken on sidewalks. This approach allows for the creation of high-resolution digital elevation models of the entire physical sidewalk surface from which physical barriers such as local gradients and height differences can be detected by uniform image filtering. The method can be used with a Web-based data visualization tool in a geographical information system, permitting first-person views of the ground and accurate geolocation of the barriers on the map. Findings The findings of this study showed that capturing the road surface with a small wide-angle camera while walking is sufficient for recording subtle 3D undulations in the road surface. The method used for capturing data and the precision of the 3D restoration results are described. Originality/value The proposed approach demonstrates the significant benefits of creating a digital twin of walking space using photogrammetry as a cost-effective means of balancing the acquisition of 3D data that is sufficiently accurate to show the detailed geometric features needed to navigate a walking space safely. Further, the findings showed how information can be provided directly to users through two-dimensional (2D) and 3D Web-based visualizations.


2022 ◽  
Vol 2022 ◽  
pp. 1-12
Author(s):  
Zechen Yao ◽  
Renfeng Yang ◽  
Jian Kang ◽  
Zhigang Zhang

In this paper, the applicability of the elastic recovery (resilience) experiment for asphalt-rubber (AR) binders has been quantitatively assessed. The mechanical model, based on the viscoelastic constitutive relation and particle inclusion theory, was developed. The interfacial detachment between crumb rubber (CR) particles and asphalt caused by stress concentration was analyzed with Weibull statistical equations. Based on the road roughness excitation, the vehicle-road coupling vibration model was established to analyze the impact of vehicle loading on road surface deformation. AR binders with different CR particle sizes were assessed using scanning electron microscope (SEM) imaging and prepared for testing the elastic recovery (resilience). The results showed that the greater internal stress caused by the longer stretch length of AR binders in the elastic recovery experiment was ten times higher than that obtained from the resilience experiment, leading to the interfacial detachment between asphalt and the CR particles. Hence, the elastic property of some of the CR particles with high modulus was not reflected, resulting in the test values being lower than actual values. With the reduction of CR particle size, the interfacial detachment was improved in the elastic recovery experiment due to intense material interchange and the enhancement of interfacial bond strength. The millimeter-scale compression deformation of the AR binder in the resilience experiment was closer to the actual deformation of the road surface. The experimental time of resilience (120 min) has been reported less than that for elastic recovery (200 min–230 min). This study shows that the resilience experiment has a significant advantage in assessing the elastic property of the AR binder.


Sign in / Sign up

Export Citation Format

Share Document