New Exact Solutions of Fractional-Order Partial Differential Equations

Author(s):  
Santanu Saha Ray
2013 ◽  
Vol 2013 ◽  
pp. 1-5 ◽  
Author(s):  
Yusuf Pandir ◽  
Halime Ulusoy

We firstly give some new functions called generalized hyperbolic functions. By the using of the generalized hyperbolic functions, new kinds of transformations are defined to discover the exact approximate solutions of nonlinear partial differential equations. Based on the generalized hyperbolic function transformation of the generalized KdV equation and the coupled equal width wave equations (CEWE), we find new exact solutions of two equations and analyze the properties of them by taking different parameter values of the generalized hyperbolic functions. We think that these solutions are very important to explain some physical phenomena.


2015 ◽  
Vol 19 (4) ◽  
pp. 1173-1176 ◽  
Author(s):  
Lian-Xiang Cui ◽  
Li-Mei Yan ◽  
Yan-Qin Liu

An improved extended tg-function method, which combines the fractional complex transform and the extended tanh-function method, is applied to find exact solutions of non-linear fractional partial differential equations. Generalized Hirota-Satsuma coupled Korteweg-de Vries equations are used as an example to elucidate the effectiveness and simplicity of the method.


2018 ◽  
Vol 6 (4) ◽  
Author(s):  
Ziad Salem Rached

Constructing exact solutions of nonlinear ordinary and partial differential equations is an important topic in various disciplines such as Mathematics, Physics, Engineering, Biology, Astronomy, Chemistry,… since many problems and experiments can be modeled using these equations. Various methods are available in the literature to obtain explicit exact solutions. In this correspondence, the enhanced modified simple equation method (EMSEM) is applied to the Phi-4 partial differential equation. New exact solutions are obtained.


2019 ◽  
Vol 7 (2) ◽  
pp. 81
Author(s):  
Dipankar Kumar ◽  
Samir Chandra Ray

This paper investigates the new exact solutions of the three nonlinear time fractional partial differential equations namely the nonlinear time fractional Clannish Random Walker’s Parabolic (CRWP) equation, the nonlinear time fractional modified Kawahara equation, and the nonlinear time fractional BBM-Burger equation by utilizing an extended form of exp(-φ(ξ))-expansion method in the sense of conformable fractional derivative. As outcomes, some new exact solutions are obtained and signified by hyperbolic function solutions, trigonometric function solutions, and rational function solutions. Some solutions have been plotted by MATLAB software to show the physical significance of our studied equations. In the point of view of our executed method and generated results, we may conclude that extended exp (-φ(ξ))-expansion method is more efficient than exp(-φ(ξ))-expansion method to extract the new exact solutions for solving any types of integer and fractional differential equations arising in mathematical physics.   


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Bin Zheng

We extend the Exp-function method to fractional partial differential equations in the sense of modified Riemann-Liouville derivative based on nonlinear fractional complex transformation. For illustrating the validity of this method, we apply it to the space-time fractional Fokas equation and the nonlinear fractional Sharma-Tasso-Olver (STO) equation. As a result, some new exact solutions for them are successfully established.


Sign in / Sign up

Export Citation Format

Share Document