scholarly journals Application of the extended exp(-φ(ξ))-expansion method to the nonlinear conformable time-fractional partial differential equations

2019 ◽  
Vol 7 (2) ◽  
pp. 81
Author(s):  
Dipankar Kumar ◽  
Samir Chandra Ray

This paper investigates the new exact solutions of the three nonlinear time fractional partial differential equations namely the nonlinear time fractional Clannish Random Walker’s Parabolic (CRWP) equation, the nonlinear time fractional modified Kawahara equation, and the nonlinear time fractional BBM-Burger equation by utilizing an extended form of exp(-φ(ξ))-expansion method in the sense of conformable fractional derivative. As outcomes, some new exact solutions are obtained and signified by hyperbolic function solutions, trigonometric function solutions, and rational function solutions. Some solutions have been plotted by MATLAB software to show the physical significance of our studied equations. In the point of view of our executed method and generated results, we may conclude that extended exp (-φ(ξ))-expansion method is more efficient than exp(-φ(ξ))-expansion method to extract the new exact solutions for solving any types of integer and fractional differential equations arising in mathematical physics.   

2013 ◽  
Vol 2013 ◽  
pp. 1-5 ◽  
Author(s):  
Yusuf Pandir ◽  
Halime Ulusoy

We firstly give some new functions called generalized hyperbolic functions. By the using of the generalized hyperbolic functions, new kinds of transformations are defined to discover the exact approximate solutions of nonlinear partial differential equations. Based on the generalized hyperbolic function transformation of the generalized KdV equation and the coupled equal width wave equations (CEWE), we find new exact solutions of two equations and analyze the properties of them by taking different parameter values of the generalized hyperbolic functions. We think that these solutions are very important to explain some physical phenomena.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Bin Zheng ◽  
Qinghua Feng

Based on a nonlinear fractional complex transformation, the Jacobi elliptic equation method is extended to seek exact solutions for fractional partial differential equations in the sense of the modified Riemann-Liouville derivative. For demonstrating the validity of this method, we apply it to solve the space fractional coupled Konopelchenko-Dubrovsky (KD) equations and the space-time fractional Fokas equation. As a result, some exact solutions for them including the hyperbolic function solutions, trigonometric function solutions, rational function solutions, and Jacobi elliptic function solutions are successfully found.


2015 ◽  
Vol 19 (4) ◽  
pp. 1173-1176 ◽  
Author(s):  
Lian-Xiang Cui ◽  
Li-Mei Yan ◽  
Yan-Qin Liu

An improved extended tg-function method, which combines the fractional complex transform and the extended tanh-function method, is applied to find exact solutions of non-linear fractional partial differential equations. Generalized Hirota-Satsuma coupled Korteweg-de Vries equations are used as an example to elucidate the effectiveness and simplicity of the method.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Bin Zheng

We extend the Exp-function method to fractional partial differential equations in the sense of modified Riemann-Liouville derivative based on nonlinear fractional complex transformation. For illustrating the validity of this method, we apply it to the space-time fractional Fokas equation and the nonlinear fractional Sharma-Tasso-Olver (STO) equation. As a result, some new exact solutions for them are successfully established.


Symmetry ◽  
2019 ◽  
Vol 11 (8) ◽  
pp. 952
Author(s):  
Sekson Sirisubtawee ◽  
Sanoe Koonprasert ◽  
Surattana Sungnul

In this paper, the ( G ′ / G , 1 / G ) -expansion method is applied to acquire some new, exact solutions of certain interesting, nonlinear, fractional-order partial differential equations arising in mathematical physics. The considered equations comprise the time-fractional, (2+1)-dimensional extended quantum Zakharov-Kuznetsov equation, and the space-time-fractional generalized Hirota-Satsuma coupled Korteweg-de Vries (KdV) system in the sense of the conformable fractional derivative. Applying traveling wave transformations to the equations, we obtain the corresponding ordinary differential equations in which each of them provides a system of nonlinear algebraic equations when the method is used. As a result, many analytical exact solutions obtained of these equations are expressed in terms of hyperbolic function solutions, trigonometric function solutions, and rational function solutions. The graphical representations of some obtained solutions are demonstrated to better understand their physical features, including bell-shaped solitary wave solutions, singular soliton solutions, solitary wave solutions of kink type, and so on. The method is very efficient, powerful, and reliable for solving the proposed equations and other nonlinear fractional partial differential equations with the aid of a symbolic software package.


2017 ◽  
Vol 2017 ◽  
pp. 1-14
Author(s):  
Ji Juan-Juan ◽  
Guo Ye-Cai ◽  
Zhang Lan-Fang ◽  
Zhang Chao-Long

A table lookup method for solving nonlinear fractional partial differential equations (fPDEs) is proposed in this paper. Looking up the corresponding tables, we can quickly obtain the exact analytical solutions of fPDEs by using this method. To illustrate the validity of the method, we apply it to construct the exact analytical solutions of four nonlinear fPDEs, namely, the time fractional simplified MCH equation, the space-time fractional combined KdV-mKdV equation, the (2+1)-dimensional time fractional Zoomeron equation, and the space-time fractional ZKBBM equation. As a result, many new types of exact analytical solutions are obtained including triangular periodic solution, hyperbolic function solution, singular solution, multiple solitary wave solution, and Jacobi elliptic function solution.


Author(s):  
Mohamed Soror Abdel Latif ◽  
Abass Hassan Abdel Kader

In this chapter, the authors discuss the effectiveness of the invariant subspace method (ISM) for solving fractional partial differential equations. For this purpose, they have chosen a nonlinear time fractional partial differential equation (PDE) with variable coefficients to be investigated through this method. One-, two-, and three-dimensional invariant subspace classifications have been performed for this equation. Some new exact solutions have been obtained using the ISM. Also, the authors give a comparison between this method and the homogeneous balance principle (HBP).


Author(s):  
Omar Abu Arqub

Purpose The purpose of this study is to introduce the reproducing kernel algorithm for treating classes of time-fractional partial differential equations subject to Robin boundary conditions with parameters derivative arising in fluid flows, fluid dynamics, groundwater hydrology, conservation of energy, heat conduction and electric circuit. Design/methodology/approach The method provides appropriate representation of the solutions in convergent series formula with accurately computable components. This representation is given in the W(Ω) and H(Ω) inner product spaces, while the computation of the required grid points relies on the R(y,s) (x, t) and r(y,s) (x, t) reproducing kernel functions. Findings Numerical simulation with different order derivatives degree is done including linear and nonlinear terms that are acquired by interrupting the n-term of the exact solutions. Computational results showed that the proposed algorithm is competitive in terms of the quality of the solutions found and is very valid for solving such time-fractional models. Research limitations/implications Future work includes the application of the reproducing kernel algorithm to highly nonlinear time-fractional partial differential equations such as those arising in single and multiphase flows. The results will be published in forthcoming papers. Practical implications The study included a description of fundamental reproducing kernel algorithm and the concepts of convergence, and error behavior for the reproducing kernel algorithm solvers. Results obtained by the proposed algorithm are found to outperform in terms of accuracy, generality and applicability. Social implications Developing analytical and numerical methods for the solutions of time-fractional partial differential equations is a very important task owing to their practical interest. Originality/value This study, for the first time, presents reproducing kernel algorithm for obtaining the numerical solutions of some certain classes of Robin time-fractional partial differential equations. An efficient construction is provided to obtain the numerical solutions for the equations, along with an existence proof of the exact solutions based upon the reproducing kernel theory.


Sign in / Sign up

Export Citation Format

Share Document