Medical Image Segmentation Using Deep Neural Networks with Pre-trained Encoders

Author(s):  
Alexandr A. Kalinin ◽  
Vladimir I. Iglovikov ◽  
Alexander Rakhlin ◽  
Alexey A. Shvets
2020 ◽  
Author(s):  
Kun Chen ◽  
Manning Wang ◽  
Zhijian Song

Abstract Background: Deep neural networks have been widely used in medical image segmentation and have achieved state-of-the-art performance in many tasks. However, different from the segmentation of natural images or video frames, the manual segmentation of anatomical structures in medical images needs high expertise so the scale of labeled training data is very small, which is a major obstacle for the improvement of deep neural networks performance in medical image segmentation. Methods: In this paper, we proposed a new end-to-end generation-segmentation framework by integrating Generative Adversarial Networks (GAN) and a segmentation network and train them simultaneously. The novelty is that during the training of the GAN, the intermediate synthetic images generated by the generator of the GAN are used to pre-train the segmentation network. As the advances of the training of the GAN, the synthetic images evolve gradually from being very coarse to containing more realistic textures, and these images help train the segmentation network gradually. After the training of GAN, the segmentation network is then fine-tuned by training with the real labeled images. Results: We evaluated the proposed framework on four different datasets, including 2D cardiac dataset and lung dataset, 3D prostate dataset and liver dataset. Compared with original U-net and CE-Net, our framework can achieve better segmentation performance. Our framework also can get better segmentation results than U-net on small datasets. In addition, our framework is more effective than the usual data augmentation methods. Conclusions: The proposed framework can be used as a pre-train method of segmentation network, which helps to get a better segmentation result. Our method can solve the shortcomings of current data augmentation methods to some extent.


2021 ◽  
Author(s):  
Sheng Lu ◽  
Jungang Han ◽  
Jiantao Li ◽  
Liyang Zhu ◽  
Jiewei Jiang ◽  
...  

2021 ◽  
Vol 68 ◽  
pp. 101907
Author(s):  
Neerav Karani ◽  
Ertunc Erdil ◽  
Krishna Chaitanya ◽  
Ender Konukoglu

IEEE Access ◽  
2020 ◽  
Vol 8 ◽  
pp. 138129-138140
Author(s):  
Peirui Bai ◽  
Kai Yang ◽  
Xiaolin Min ◽  
Ziyang Guo ◽  
Chang Li ◽  
...  

2021 ◽  
Author(s):  
Nicola K Dinsdale ◽  
Mark Jenkinson ◽  
Ana IL Namburete

Acquisition of high quality manual annotations is vital for the development of segmentation algorithms. However, to create them we require a substantial amount of expert time and knowledge. Large numbers of labels are required to train convolutional neural networks due to the vast number of parameters that must be learned in the optimisation process. Here, we develop the STAMP algorithm to allow the simultaneous training and pruning of a UNet architecture for medical image segmentation with targeted channelwise dropout to make the network robust to the pruning. We demonstrate the technique across segmentation tasks and imaging modalities. It is then shown that, through online pruning, we are able to train networks to have much higher performance than the equivalent standard UNet models while reducing their size by more than 85% in terms of parameters. This has the potential to allow networks to be directly trained on datasets where very low numbers of labels are available.


Sign in / Sign up

Export Citation Format

Share Document