medical image segmentation
Recently Published Documents





10.29007/r6cd ◽  
2022 ◽  
Hoang Nhut Huynh ◽  
My Duyen Nguyen ◽  
Thai Hong Truong ◽  
Quoc Tuan Nguyen Diep ◽  
Anh Tu Tran ◽  

Segmentation is one of the most common methods for analyzing and processing medical images, assisting doctors in making accurate diagnoses by providing detailed information about the required body part. However, segmenting medical images presents a number of challenges, including the need for medical professionals to be trained, the fact that it is time-consuming and prone to errors. As a result, it appears that an automated medical image segmentation system is required. Deep learning algorithms have recently demonstrated superior performance for segmentation tasks, particularly semantic segmentation networks that provide a pixel-level understanding of images. U- Net for image segmentation is one of the modern complex networks in the field of medical imaging; several segmentation networks have been built on its foundation with the advancements of Recurrent Residual convolutional units and the construction of recurrent residual convolutional neural network based on U-Net (R2U-Net). R2U-Net is used to perform trachea and bronchial segmentation on a dataset of 36,000 images. With a variety of experiments, the proposed segmentation resulted in a dice-coefficient of 0.8394 on the test dataset. Finally, a number of research issues are raised, indicating the need for future improvements.

2022 ◽  
Vol 8 ◽  
Hongyu Wang ◽  
Hong Gu ◽  
Pan Qin ◽  
Jia Wang

Deep learning has achieved considerable success in medical image segmentation. However, applying deep learning in clinical environments often involves two problems: (1) scarcity of annotated data as data annotation is time-consuming and (2) varying attributes of different datasets due to domain shift. To address these problems, we propose an improved generative adversarial network (GAN) segmentation model, called U-shaped GAN, for limited-annotated chest radiograph datasets. The semi-supervised learning approach and unsupervised domain adaptation (UDA) approach are modeled into a unified framework for effective segmentation. We improve GAN by replacing the traditional discriminator with a U-shaped net, which predicts each pixel a label. The proposed U-shaped net is designed with high resolution radiographs (1,024 × 1,024) for effective segmentation while taking computational burden into account. The pointwise convolution is applied to U-shaped GAN for dimensionality reduction, which decreases the number of feature maps while retaining their salient features. Moreover, we design the U-shaped net with a pretrained ResNet-50 as an encoder to reduce the computational burden of training the encoder from scratch. A semi-supervised learning approach is proposed learning from limited annotated data while exploiting additional unannotated data with a pixel-level loss. U-shaped GAN is extended to UDA by taking the source and target domain data as the annotated data and the unannotated data in the semi-supervised learning approach, respectively. Compared to the previous models dealing with the aforementioned problems separately, U-shaped GAN is compatible with varying data distributions of multiple medical centers, with efficient training and optimizing performance. U-shaped GAN can be generalized to chest radiograph segmentation for clinical deployment. We evaluate U-shaped GAN with two chest radiograph datasets. U-shaped GAN is shown to significantly outperform the state-of-the-art models.

Sensors ◽  
2022 ◽  
Vol 22 (2) ◽  
pp. 523
Kh Tohidul Islam ◽  
Sudanthi Wijewickrema ◽  
Stephen O’Leary

Multi-modal three-dimensional (3-D) image segmentation is used in many medical applications, such as disease diagnosis, treatment planning, and image-guided surgery. Although multi-modal images provide information that no single image modality alone can provide, integrating such information to be used in segmentation is a challenging task. Numerous methods have been introduced to solve the problem of multi-modal medical image segmentation in recent years. In this paper, we propose a solution for the task of brain tumor segmentation. To this end, we first introduce a method of enhancing an existing magnetic resonance imaging (MRI) dataset by generating synthetic computed tomography (CT) images. Then, we discuss a process of systematic optimization of a convolutional neural network (CNN) architecture that uses this enhanced dataset, in order to customize it for our task. Using publicly available datasets, we show that the proposed method outperforms similar existing methods.

2022 ◽  
Erqiang Deng ◽  
Zhiguang Qin ◽  
Dajiang Chen ◽  
Zhen Qin ◽  
Yi Ding ◽  

Abstract Deep learning has been widely used in medical image segmentation, although the accuracy is affected by the problems of small sample space, data imbalance, and cross-device differences. Aiming at such issues, a enhancement GAN network is proposed by using the domain transferring of the adversarial generation network to enhance the original medical images. Specifically, based on retaining the transferability of the original GAN network, a new optimizer is added to generate a sample space with a continuous distribution, which can be used as the target domain of the original image transferring. The optimizer back-propagates the labels of the supervised data set through the segmentation network and maps the discrete distribution of the labels to the continuous image distribution, which has a high similarity to the original image but improves the segmentation efficiency.On this basis, the optimized distribution is taken as the target domain, and the generator and discriminator of the GAN network are trained so that the generator can transfer the original image distribution to the target distribution. extensive experiments are conducted based on MRI, CT, and ultrasound data sets. The experimental results show that, the proposed method has a good generalization effect in medical image segmentation, even when the data set has limited sample space and data imbalance to a certain extent.

Mathematics ◽  
2022 ◽  
Vol 10 (2) ◽  
pp. 206
Yanshan Zhang ◽  
Yuru Tian

Image segmentation technology is dedicated to the segmentation of intensity inhomogeneous at present. In this paper, we propose a new method that incorporates fractional varying-order differential and local fitting energy to construct a new variational level set active contour model. The energy functions in this paper mainly include three parts: the local term, the regular term and the penalty term. The local term combined with fractional varying-order differential can obtain more details of the image. The regular term is used to regularize the image contour length. The penalty term is used to keep the evolution curve smooth. True positive (TP) rate, false positive (FP) rate, precision (P) rate, Jaccard similarity coefficient (JSC), and Dice similarity coefficient (DSC) are employed as the comparative measures for the segmentation results. Experimental results for both synthetic and real images show that our method has more accurate segmentation results than other models, and it is robust to intensity inhomogeneous or noises.

2022 ◽  
Vol 2022 ◽  
pp. 1-18
Muhammad Arif ◽  
F. Ajesh ◽  
Shermin Shamsudheen ◽  
Oana Geman ◽  
Diana Izdrui ◽  

Radiology is a broad subject that needs more knowledge and understanding of medical science to identify tumors accurately. The need for a tumor detection program, thus, overcomes the lack of qualified radiologists. Using magnetic resonance imaging, biomedical image processing makes it easier to detect and locate brain tumors. In this study, a segmentation and detection method for brain tumors was developed using images from the MRI sequence as an input image to identify the tumor area. This process is difficult due to the wide variety of tumor tissues in the presence of different patients, and, in most cases, the similarity within normal tissues makes the task difficult. The main goal is to classify the brain in the presence of a brain tumor or a healthy brain. The proposed system has been researched based on Berkeley’s wavelet transformation (BWT) and deep learning classifier to improve performance and simplify the process of medical image segmentation. Significant features are extracted from each segmented tissue using the gray-level-co-occurrence matrix (GLCM) method, followed by a feature optimization using a genetic algorithm. The innovative final result of the approach implemented was assessed based on accuracy, sensitivity, specificity, coefficient of dice, Jaccard’s coefficient, spatial overlap, AVME, and FoM.

2022 ◽  
Vol 1 ◽  
Junchao Lei ◽  
Tao Lei ◽  
Weiqiang Zhao ◽  
Mingyuan Xue ◽  
Xiaogang Du ◽  

Deep convolutional neural networks (DCNNs) have been widely used in medical image segmentation due to their excellent feature learning ability. In these DCNNs, the pooling operation is usually used for image down-sampling, which can gradually reduce the image resolution and thus expands the receptive field of convolution kernel. Although the pooling operation has the above advantages, it inevitably causes information loss during the down-sampling of the pooling process. This paper proposes an effective weighted pooling operation to address the problem of information loss. First, we set up a pooling window with learnable parameters, and then update these parameters during the training process. Secondly, we use weighted pooling to improve the full-scale skip connection and enhance the multi-scale feature fusion. We evaluated weighted pooling on two public benchmark datasets, the LiTS2017 and the CHAOS. The experimental results show that the proposed weighted pooling operation effectively improve network performance and improve the accuracy of liver and liver-tumor segmentation.

2022 ◽  
pp. 016173462110698
Vahid Ashkani Chenarlogh ◽  
Mostafa Ghelich Oghli ◽  
Ali Shabanzadeh ◽  
Nasim Sirjani ◽  
Ardavan Akhavan ◽  

U-Net based algorithms, due to their complex computations, include limitations when they are used in clinical devices. In this paper, we addressed this problem through a novel U-Net based architecture that called fast and accurate U-Net for medical image segmentation task. The proposed fast and accurate U-Net model contains four tuned 2D-convolutional, 2D-transposed convolutional, and batch normalization layers as its main layers. There are four blocks in the encoder-decoder path. The results of our proposed architecture were evaluated using a prepared dataset for head circumference and abdominal circumference segmentation tasks, and a public dataset (HC18-Grand challenge dataset) for fetal head circumference measurement. The proposed fast network significantly improved the processing time in comparison with U-Net, dilated U-Net, R2U-Net, attention U-Net, and MFP U-Net. It took 0.47 seconds for segmenting a fetal abdominal image. In addition, over the prepared dataset using the proposed accurate model, Dice and Jaccard coefficients were 97.62% and 95.43% for fetal head segmentation, 95.07%, and 91.99% for fetal abdominal segmentation. Moreover, we have obtained the Dice and Jaccard coefficients of 97.45% and 95.00% using the public HC18-Grand challenge dataset. Based on the obtained results, we have concluded that a fine-tuned and a simple well-structured model used in clinical devices can outperform complex models.

Tomography ◽  
2022 ◽  
Vol 8 (1) ◽  
pp. 59-76
Bing Li ◽  
Shaoyong Wu ◽  
Siqin Zhang ◽  
Xia Liu ◽  
Guangqing Li

Automatic image segmentation plays an important role in the fields of medical image processing so that these fields constantly put forward higher requirements for the accuracy and speed of segmentation. In order to improve the speed and performance of the segmentation algorithm of medical images, we propose a medical image segmentation algorithm based on simple non-iterative clustering (SNIC). Firstly, obtain the feature map of the image by extracting the texture information of it with feature extraction algorithm; Secondly, reduce the image to a quarter of the original image size by downscaling; Then, the SNIC super-pixel algorithm with texture information and adaptive parameters which used to segment the downscaling image to obtain the superpixel mark map; Finally, restore the superpixel labeled image to the original size through the idea of the nearest neighbor algorithm. Experimental results show that the algorithm uses an improved superpixel segmentation method on downscaling images, which can increase the segmentation speed when segmenting medical images, while ensuring excellent segmentation accuracy.

Sign in / Sign up

Export Citation Format

Share Document