Hydrogen and Methane Generation from Biowaste: Enhancement and Upgrading via Bioelectrochemical Systems

2020 ◽  
pp. 83-130
Author(s):  
Bo Wang ◽  
Wenzong Liu ◽  
Cristiano Varrone ◽  
Zhe Yu ◽  
Aijie Wang
2021 ◽  
Vol 8 (12) ◽  
pp. 198
Author(s):  
Nhlanganiso Ivan Madondo ◽  
Emmanuel Kweinor Tetteh ◽  
Sudesh Rathilal ◽  
Babatunde Femi Bakare

Conventionally, the anaerobic digestion of industrial effluent to biogas constitutes less than 65% methane, which warrants its potential methanation to mitigate carbon dioxide and other anthropogenic gas emissions. The performance of the anaerobic digestion process can be enhanced by improving biochemical activities. The aim of this study was to examine the synergistic effect of the magnetite and bioelectrochemical systems (BES) on anaerobic digestion by comparing four digesters, namely a microbial fuel cell (MFC), microbial electrolysis cell (MEC), MEC with 1 g of magnetite nanoparticles (MECM), and a control digester with only sewage sludge (500 mL) and inoculum (300 mL). The MFC digester was equipped with zinc and copper electrodes including a 100 Ω resistor, whereas the MEC was supplied with 0.4 V on the electrodes. The MECM digester performed better as it improved microbial activity, increased the content of methane (by 43% compared to 41% of the control), and reduced contaminants (carbon oxygen demand, phosphates, colour, turbidity, total suspended solids, and total organic carbon) by more than 81.9%. Current density (jmax = 25.0 mA/m2) and electrical conductivity (275 µS/cm) were also high. The prospects of combining magnetite and bioelectrochemical systems seem very promising as they showed a great possibility for use in bioelectrochemical methane generation and wastewater treatment.


2010 ◽  
Vol 18 (3) ◽  
pp. 632-636
Author(s):  
Jin-Cai SHI ◽  
Xin-Di LIAO ◽  
Yin-Bao WU

1991 ◽  
Vol 23 (7-9) ◽  
pp. 1229-1237
Author(s):  
Chaio-Fuei Ouyang ◽  
Tain-Gen Chang

The treatment characteristics of municipal sludge were investigated by the anaerobic activated sludge digestion (AASD) system. This study used the suspended growth system and mesophilic temperature in the digestors and separators; the system achieves a more stable and improved process; such a process configuration offers the possibility of a substantial reduction in the total volume necessary for efficient stabilization. This study presents data indicating that the AASS system is feasible. In general, with an applied solids concentration of TS= 2%, the nonbiodegradable portion of the substrate concentration contained in the primary and secondary sludge was found to be 40.6% and 35.1% on the basis or TVS and COD, respectively. This study also provides evidence that the reactions at a recycling ratio of R=1 and R=3 are considerably more stable than those achieved in conventional or other recycling ratio digestors with a HRT of 9 days or longer. The gas production and bioactivity is also higher than that normally produced by the conventional single-stage digestion system. The experimental results also indicate that the dilution rate exceeds the maximum specific growth rate as the HRT is decreased from 9 days to 6 days. The significant saving in reactor volume and enhanced methane generation should offset the energy required for digested sludge recycling.


2021 ◽  
Vol 491 ◽  
pp. 229576
Author(s):  
Daniele Molognoni ◽  
Pau Bosch-Jimenez ◽  
Jordi Suarez ◽  
Monica Della Pirriera ◽  
Eduard Borràs

Author(s):  
Weigang Peng ◽  
Lifei Zhang ◽  
Simone Tumiati ◽  
Alberto Vitale Brovarone ◽  
Han Hu ◽  
...  

Catalysts ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 278
Author(s):  
Katharina Herkendell

Bioelectrochemical systems (BES) employ enzymes, subcellular structures or whole electroactive microorganisms as biocatalysts for energy conversion purposes, such as the electrosynthesis of value-added chemicals and power generation in biofuel cells. From a bioelectrode engineering viewpoint, customizable nanostructured carbonaceous matrices have recently received considerable scientific attention as promising electrode supports due to their unique properties attractive to bioelectronics devices. This review demonstrates the latest advances in the application of nano- and micro-structured carbon electrode assemblies in BES. Specifically, in view of the gradual increase in the commercial applicability of these systems, we aim to address the stability and scalability of different BES designs and to highlight their potential roles in a circular bioeconomy.


Sign in / Sign up

Export Citation Format

Share Document