Analysis of Machine Learning and Deep Learning Approaches for DDoS Attack Detection on Internet of Things Network

Author(s):  
Aman Kashyap ◽  
Ankit Kumar Jain
2021 ◽  
Vol 15 (3) ◽  
pp. 1-18
Author(s):  
Hongsong Chen ◽  
Caixia Meng ◽  
Jingjiu Chen

Aiming at the problem of DDoS attack detection in internet of things (IoT) environment, statistical and machine-learning algorithms are proposed to model and analyze the network traffic of DDoS attack. Docker-based virtualization platform is designed and configured to collect IoT network traffic data. Then the packet-level, flow-level, and second-level network traffic datasets are generated, and the importance of features in different traffic datasets are sorted. By SKlearn and TensorFlow machine-learning software framework, different machine learning algorithms are researched and compared. In packet-level DDoS attack detection, KNN algorithm achieves the best results; the accuracy is 92.8%. In flow-level DDoS attack detection, the voting algorithm achieves the best results; the accuracy is 99.8%. In second-level DDoS attack detection, the RNN algorithm behaves best results; the accuracy is 97.1%. The DDoS attack detection method combined with statistical analysis and machine-learning can effectively detect large-scale DDoS attacks on the internet of things simulation experimental environment.


2021 ◽  
Author(s):  
Merlin James Rukshan Dennis

Distributed Denial of Service (DDoS) attack is a serious threat on today’s Internet. As the traffic across the Internet increases day by day, it is a challenge to distinguish between legitimate and malicious traffic. This thesis proposes two different approaches to build an efficient DDoS attack detection system in the Software Defined Networking environment. SDN is the latest networking approach which implements centralized controller, which is programmable. The central control and the programming capability of the controller are used in this thesis to implement the detection and mitigation mechanisms. In this thesis, two designed approaches, statistical approach and machine-learning approach, are proposed for the DDoS detection. The statistical approach implements entropy computation and flow statistics analysis. It uses the mean and standard deviation of destination entropy, new flow arrival rate, packets per flow and flow duration to compute various thresholds. These thresholds are then used to distinguish normal and attack traffic. The machine learning approach uses Random Forest classifier to detect the DDoS attack. We fine-tune the Random Forest algorithm to make it more accurate in DDoS detection. In particular, we introduce the weighted voting instead of the standard majority voting to improve the accuracy. Our result shows that the proposed machine-learning approach outperforms the statistical approach. Furthermore, it also outperforms other machine-learning approach found in the literature.


2020 ◽  
Vol 17 (4A) ◽  
pp. 655-661
Author(s):  
Mohammad Shurman ◽  
Rami Khrais ◽  
Abdulrahman Yateem

In the recent years, Denial-of-Service (DoS) or Distributed Denial-of-Service (DDoS) attack has spread greatly and attackers make online systems unavailable to legitimate users by sending huge number of packets to the target system. In this paper, we proposed two methodologies to detect Distributed Reflection Denial of Service (DrDoS) attacks in IoT. The first methodology uses hybrid Intrusion Detection System (IDS) to detect IoT-DoS attack. The second methodology uses deep learning models, based on Long Short-Term Memory (LSTM) trained with latest dataset for such kinds of DrDoS. Our experimental results demonstrate that using the proposed methodologies can detect bad behaviour making the IoT network safe of Dos and DDoS attacks


Sign in / Sign up

Export Citation Format

Share Document