Thermal Barrier Coating on IC Engines; A Review

Author(s):  
Anoop. R. Chattarki ◽  
K. G. Basavakumar
Author(s):  
Chandra Pratap Singh ◽  
Arif Taibani ◽  
Shankar Krishnan

Abstract Currently available Internal combustion (IC) engines contribute 25% of the total world energy consumption. IC engines convert only 40% of the fuel energy into the indicated power[1]. Roughly, 30 percent of heat energy is lost from the combustion chamber to the environment. Interest in the design and development of thermal barrier coating (TBC) is increasing due to an increase in fuel costs and due to the decrease in high quality fuel production[2], [3]. The coating materials with low thermal conductivity and high heat capacity led to problems of high surface temperature, which degrade the volumetric efficiency and an increase in the NOx emission. On the other hand, thin TBC of low thermal conductivity and low heat capacity showed high thermal efficiency. Thin coatings could able to prevent intake air heating with effective resistance during the combustion[4]. However, fundamental relationships between thermal efficiency and thermophysical properties, structure, and durability of TBC still need to be investigated. Few studies suggested that the heat interaction study based on the crank angle position could be the best method to estimate the thermodynamics efficiency than the conventionally calculated heat rejection by the adiabatic engine[5], [6]. This work shows a design methodology to develop a thermal barrier coating (TBC), which can reduce heat loss by maintaining the minimum temperature difference between the surface and the in-cylinder gas temperature. The temperature fluctuation of TBC improves the thermal efficiency of internal combustion (IC) engines by reducing the heat loss to the coolant. This work also investigates the thermophysical behaviour of nearby available material and the applicability as a TBC.


2018 ◽  
Vol 5 (5) ◽  
pp. 12623-12631 ◽  
Author(s):  
Parvati Ramaswamy ◽  
V. Shankar ◽  
V.R. Reghu ◽  
Nikhil Mathew ◽  
S. Manoj Kumar

2018 ◽  
Vol 18 (1) ◽  
pp. 182-192 ◽  
Author(s):  
Mohammed J Kadhim ◽  
Mohammed H Hafiz ◽  
Maryam A Ali Bash

The high temperature corrosion behavior of thermal barrier coating (TBC) systemconsisting of IN-738 LC superalloy substrate, air plasma sprayed Ni24.5Cr6Al0.4Y (wt%)bond coat and air plasma sprayed ZrO2-20 wt% ceria-3.6 wt% yttria (CYSZ) ceramic coatwere characterized. The upper surfaces of CYSZ covered with 30 mg/cm2 , mixed 45 wt%Na2SO4-55 wt% V2O5 salt were exposed at different temperatures from 800 to 1000 oC andinteraction times from 1 up to 8 h. The upper surface plan view of the coatings wereidentified for topography, roughness, chemical composition, phases and reaction productsusing scanning electron microscopy, energy dispersive spectroscopy, talysurf, and X-raydiffraction. XRD analyses of the plasma sprayed coatings after hot corrosion confirmed thephase transformation of nontransformable tetragonal (t') into monoclinic phase, presence ofYVO4 and CeVO4 products. Analysis of the hot corrosion CYSZ coating confirmed theformation of high volume fraction of YVO4, with low volume fractions of CeOV4 and CeO2.The formation of these compounds were combined with formation of monoclinic phase (m)from transformation of nontransformable tetragonal phase (t').


2012 ◽  
Vol 132 (10) ◽  
pp. 864-870
Author(s):  
Tetsuo Fukuchi ◽  
Norikazu Fuse ◽  
Mitsutoshi Okada ◽  
Tomoharu Fujii ◽  
Maya Mizuno ◽  
...  

2017 ◽  
Vol 137 (3) ◽  
pp. 147-152 ◽  
Author(s):  
Tetsuo Fukuchi ◽  
Norikazu Fuse ◽  
Mitsutoshi Okada ◽  
Tomoharu Fujii ◽  
Maya Mizuno ◽  
...  

2015 ◽  
Vol 30 (12) ◽  
pp. 1261
Author(s):  
ZHANG Xiao-Feng ◽  
ZHOU Ke-Song ◽  
ZHANG Ji-Fu ◽  
ZHANG Yong ◽  
LIU Min ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document