On the Geometric Approach to Transformations of the Coordinates of Inertial Frames of Reference

Author(s):  
A. A. Talyshev
Entropy ◽  
2021 ◽  
Vol 23 (11) ◽  
pp. 1515
Author(s):  
Robert K. Niven

This study examines the invariance properties of the thermodynamic entropy production in its global (integral), local (differential), bilinear, and macroscopic formulations, including dimensional scaling, invariance to fixed displacements, rotations or reflections of the coordinates, time antisymmetry, Galilean invariance, and Lie point symmetry. The Lie invariance is shown to be the most general, encompassing the other invariances. In a shear-flow system involving fluid flow relative to a solid boundary at steady state, the Galilean invariance property is then shown to preference a unique pair of inertial frames of reference—here termed an entropic pair—respectively moving with the solid or the mean fluid flow. This challenges the Newtonian viewpoint that all inertial frames of reference are equivalent. Furthermore, the existence of a shear flow subsystem with an entropic pair different to that of the surrounding system, or a subsystem with one or more changing entropic pair(s), requires a source of negentropy—a power source scaled by an absolute temperature—to drive the subsystem. Through the analysis of different shear flow subsystems, we present a series of governing principles to describe their entropic pairing properties and sources of negentropy. These are unaffected by Galilean transformations, and so can be understood to “lie above” the Galilean inertial framework of Newtonian mechanics. The analyses provide a new perspective into the field of entropic mechanics, the study of the relative motions of objects with friction.


Author(s):  
David M. Wittman

This chapter develops crucial distinctions between constant‐velocity (also called inertial) frames of reference and accelerating ones. Inertial frames respect Newton’s first law—objects maintain constant velocity unless acted upon by a net force—while accelerating frames violate this law. Therefore, much of our thinking about whether the laws of physics are the same in all frames will really concern *inertial* frames. Newton’s first law gives us a foolproof test for distinguishing accelerating frames from inertial frames; this testworks even if velocitymeasurements are not directly available. We sometimes invent fictitious forces (such as “centrifugal force”) to explain the acceleration of free objects in accelerating frames, but we know how to determine that these are indeed fictitious.We also examine relationships between acceleration, force, andmass (Newton’s second law).We *define*mass as the ratio of force to acceleration, so mass represents a resistance to acceleration, or inertia.


2011 ◽  
Vol 32 (5) ◽  
pp. 1347-1356
Author(s):  
Andrew E Chubykalo ◽  
Augusto Espinoza ◽  
B P Kosyakov

Author(s):  
S. Küchemann ◽  
P. Klein ◽  
H. Fouckhardt ◽  
S. Gröber ◽  
J. Kuhn

Author(s):  
Andrew Chubykalo ◽  
Augusto Espinoza ◽  
Victor Kuligin ◽  
Maria Korneva

The paper discusses the problem of equality of Inertial frames of reference IFR. The hypothesis of a physical ether, whose properties do not depend on the choice of an inertial reference frame, is proposed. Based on the concept of the physical ether, it turns out the features of instantaneous action at a distance. It is shown that there is a class of transformations that preserves Maxwell’s equations unchanged. The problem of choosing a transformation is posed. This choice should be based on experimental research.


1977 ◽  
Vol 25 (1-12) ◽  
pp. 37-82 ◽  
Author(s):  
Ernst Schmutzer ◽  
Jerzy Plebański

Sign in / Sign up

Export Citation Format

Share Document