Economic Dispatch Strategy of Solar Thermal-Wind Power System Considering Conditional Value-at-Risk

Author(s):  
Zhenyuan Li ◽  
Yong Sun ◽  
Fengkai Qiu ◽  
Ming Zeng ◽  
Jialin Lin ◽  
...  
Energies ◽  
2019 ◽  
Vol 12 (16) ◽  
pp. 3133 ◽  
Author(s):  
Hongji Lin ◽  
Chongyu Wang ◽  
Fushuan Wen ◽  
Chung-Li Tseng ◽  
Jiahua Hu ◽  
...  

The integration of numerous intermittent renewable energy sources (IRESs) poses challenges to the power supply-demand balance due to the inherent intermittent and uncertain power outputs of IRESs, which requires higher operational flexibility of the power system. The deployment of flexible ramping products (FRPs) provides a new alternative to accommodate the high penetration of IRESs. Given this background, a bi-level risk-limiting real-time unit commitment/real-time economic dispatch model considering FRPs provided by different flexibility resources is proposed. In the proposed model, the objective is to maximize the social surplus while minimizing the operational risk, quantified using the concept of conditional value-at-risk (CVaR). Energy and ramping capabilities of conventional generating units during the start-up or shut-down processes are considered, while meeting the constraints including unit start-up/shut-down trajectories and ramping up/down rates in consecutive time periods. The Karush–Kuhn–Tucker (KKT) optimality conditions are then used to convert the bi-level programming problem into a single-level one, which can be directly solved after linearization. The modified IEEE 14-bus power system is employed to demonstrate the proposed method, and the role of FRPs in enhancing the system flexibility and improving the accommodation capability for IRESs is illustrated in some operation scenarios of the sample system. The impact of the confidence level in CVaR on the system operational flexibility is also investigated through case studies. Finally, a case study is conducted on a regional power system in Guangdong Province, China to demonstrate the potential of the proposed method for practical applications.


2021 ◽  
Vol 3 (2) ◽  
Author(s):  
Yi Zheng ◽  
Xiaoqing Bai

AbstractWind power's uncertainty is from the intermittency and fluctuation of wind speed, which brings a great challenge to solving the power system's dynamic economic dispatch problem. With the wind-storage combined system, this paper proposes a dynamic economic dispatch model considering AC optimal power flow based on Conditional Value-at-Risk ($$CVaR$$ CVaR ). Since the proposed model is hard to solve, we use the big-M method and second-order cone description technique to transform it into a trackable mixed-integer second-order conic programming (MISOCP) model. By comparing the dispatching cost of the IEEE 30-bus system and the IEEE 118-bus system at different confidence levels, it is indicated that $$CVaR$$ CVaR method can adequately estimate dispatching risk and assist decision-makers in making reasonable dispatching schedules according to their risk tolerance. Meanwhile, the optimal operational energy storage capacity and initial/final energy storage state can be determined by analyzing the dispatching cost risk under different storage capacities and initial/final states.


2013 ◽  
Vol 724-725 ◽  
pp. 649-654
Author(s):  
Jun Li Wu ◽  
Bu Han Zhang ◽  
Zhen Yin Xiao ◽  
Kui Wang

With the increased installed capacity of wind power in power system, determining optimal spinning reserve capacity is one of the most important problems in operation of electricity power system. CVaR (conditional value at risk) is introduced to calculate the risk of the cost associated with load shed and abandoning wind power with the consideration of load and wind power prediction uncertainties. Portfolio theory based on CVaR is used to build the Cost-CVaR model. Efficient frontier, which can support the system operators (SO) with the decision of optimal spinning reserve, can be obtained by solving the Cost-CVaR model. The analysis of RTS example can demonstrate the usefulness and efficiency of the model.


Author(s):  
Omer Hadzic ◽  
Smajo Bisanovic

The power trading and ancillary services provision comprise technical and financial risks and therefore require a structured risk management. Focus in this paper is on financial risk management that is important for the system operator faces when providing and using ancillary services for balancing of power system. Risk on ancillary services portfolio is modeled through value at risk and conditional value at risk measures. The application of these risk measures in power system is given in detail to show how to using the risk concept in practice. Conditional value at risk optimization is analysed in the context of portfolio selection and how to apply this optimization for hedging a portfolio consisting of different types of ancillary services.


Sign in / Sign up

Export Citation Format

Share Document