A Study on Characteristics of Soil Profile of Guwahati City Against Different Ground Motions: 1D NonLinear Ground Response Analysis

Author(s):  
Amar F. Siddique ◽  
Anusuya Acharjee ◽  
Binu Sharma
2013 ◽  
Vol 4 (1) ◽  
pp. 83-101 ◽  
Author(s):  
Shiv Shankar Kumar ◽  
A. Murali Krishna

In this study, one dimensional equivalent–linear ground response analyses were performed for some typical sites in the Guwahati city, India. Six bore locations covering about 250 km2 area of the city were considered for the analyses. As the strong motion significantly influences the ground response, seven different recorded ground motions, varying in magnitude (6.1 to 8.1) and other ground motion parameters, were adopted. Seismic site analyses were carried out for all layers of borelogs using all the seven earthquakes. Results are presented in terms of surface acceleration histories, strain and shear stress ratio variation, response spectrum, Fourier amplitude ratio versus frequency. The results indicate that accelerations were amplified the most at the surface level. The range of peak ground acceleration (PGA) values obtained at the ground surface is about 0.2 g to 0.79 for a range of PGA considered at bedrock level (rigid half space at bottom of borelog) of 0.1 g to 0.34 g. The Fourier amplifications of ground motion at surface are in the range of 4.14 – 8.99 for a frequency band of 1.75 Hz to 3.13 Hz. The maximum spectral acceleration at six locations varies in the range of 1.0 g – 4.71 g for all the seven earthquakes. The study clearly demonstrated the role for site effect and the type of ground motion on the ground response. For a given earthquake motion, amplification factors at surface level change by almost about 20% to 70% depending on local site conditions.


2021 ◽  
pp. 875529302110013
Author(s):  
Nikolaos Ntritsos ◽  
Misko Cubrinovski ◽  
Brendon A Bradley

This article scrutinizes the determination of input motions for forensic ground-response analysis in the near-source region, based on recorded surface ground motions at strong-motion station sites, from the same event. The first part of the article draws upon observed ground motions from the 22 February 2011 6.2 Mw Christchurch earthquake to discuss key challenges of the problem associated with the strong spatial variation of ground motion in the near-source region. Effects from the complexity of the rupture, propagation of seismic waves through complex geological structures, and site characteristics are explored. It is argued that, because of the strongly varying source-path “signature” on near-source ground motions, “reference” input motions for ground-response analysis must be specific to, and have similar signature characteristics (be “compatible”) with, the target site which is subject to the analysis. The second part of the article presents a four-step procedure for the derivation of site-specific input motions involving (1) determination of the reference layer where the input motion is to be applied in the analysis, (2) record selection considering the appropriateness of the recording station site for deconvolution and its compatibility with the target site, (3) deconvolution of the selected record to remove local site effects from the recorded ground motion, and (4) scaling of the deconvolved motion to account for differences in the source-to-site distance between the recording station and the target site. As part of the proposed procedure, a novel (amplitude-duration) scaling method is presented. Results from one-dimensional (1D) effective-stress analysis of two target Christchurch sites using input motions from the proposed procedure are used to critically evaluate the procedure and discuss essential requirements for its successful application.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Ngoc-Long Tran ◽  
Muhammad Aaqib ◽  
Ba-Phu Nguyen ◽  
Duy-Duan Nguyen ◽  
Viet-Linh Tran ◽  
...  

This study presents a case study on ground response analysis of one of the important cultural heritages in Hanoi, Vietnam. One-dimensional nonlinear and equivalent linear site response analyses which are commonly applied to solve the problem of seismic stress wave propagation are performed at the Ba Dinh square area. A measured in-situ shear wave velocity profile and corresponding geotechnical site investigation and laboratory test data are utilized to develop the site model for site-specific ground response analysis. A suite of earthquake records compatible with Vietnamese Design Code TCVN 9386: 2012 rock design spectrum is used as input ground motions at the bedrock. A few concerns associated with site-specific ground response evaluation are analyzed for both nonlinear and equivalent linear procedures, including shear strains, mobilized shear strength, and peak ground acceleration along with the depth. The results show that the mean maximum shear strains at any soil layer are less than 0.2% in the study area. A deamplification portion within the soil profile is observed at the layer interface with shear wave velocity reversal. The maximum peak ground acceleration (PGA) at the surface is about 0.2 g for equivalent linear analysis and 0.16 g for nonlinear analysis. The ground motions are amplified near the site natural period 0.72 s. The soil factors calculated in this study are 1.95 and 2.07 for nonlinear and equivalent linear analyses, respectively. These values are much different from the current value of 1.15 for site class C in TCVN 9386: 2012. A comparison of calculated response spectra and amplification factors with the local standard code of practice revealed significant discrepancies. It is demonstrated that the TCVN 9386: 2012 soil design spectrum is unable to capture the calculated site amplification in the study area.


2020 ◽  
Vol 6 (10) ◽  
pp. 1906-1921
Author(s):  
Manish Bhutani ◽  
Sanjeev Naval

Stability of infrastructure during earthquakes demands ground response analysis to be carried out for a particular region as the ground surface may suffer from amplified Peak Ground Acceleration (PGA) as compared to bedrock PGA causing instability. Many studies have been carried out the world over using different techniques but very few studies have been carried out for the northern part of India, Punjab situated at latitude of 31.326° N and longitude of 75.576° E, which is highly seismic and lies in seismic zone IV as per IS:1893-2016. In this paper 1-D equivalent non-linear ground response analysis has been conducted for sixteen sites of Jalandhar region, Punjab (India) by using five earthquake motions. Input ground motions are selected from the worldwide-recorded database based on the seismicity of the region. Based on the average SPT-N values, all the sites have been classified as per the guidelines of National Earthquake Hazard Reduction program (NEHRP). Shear modulus (G) was calculated using correlation between G and SPT–N Value. The ground surface PGA varies from 0.128 to 0.292 g for the sites of Jalandhar region with Amplification Factor values varying from 1.08 to 2.01. Hence the present study will be useful to the structural designers as an input towards suitable earthquake resistant design of structures for similar sites.


Sign in / Sign up

Export Citation Format

Share Document