Classification of UrbanSound8k: A Study Using Convolutional Neural Network and Multiple Data Augmentation Techniques

Author(s):  
Aamer Abdul Rahman ◽  
J. Angel Arul Jothi
2021 ◽  
pp. 1-10
Author(s):  
Gayatri Pattnaik ◽  
Vimal K. Shrivastava ◽  
K. Parvathi

Pests are major threat to economic growth of a country. Application of pesticide is the easiest way to control the pest infection. However, excessive utilization of pesticide is hazardous to environment. The recent advances in deep learning have paved the way for early detection and improved classification of pest in tomato plants which will benefit the farmers. This paper presents a comprehensive analysis of 11 state-of-the-art deep convolutional neural network (CNN) models with three configurations: transfers learning, fine-tuning and scratch learning. The training in transfer learning and fine tuning initiates from pre-trained weights whereas random weights are used in case of scratch learning. In addition, the concept of data augmentation has been explored to improve the performance. Our dataset consists of 859 tomato pest images from 10 categories. The results demonstrate that the highest classification accuracy of 94.87% has been achieved in the transfer learning approach by DenseNet201 model with data augmentation.


2020 ◽  
Vol 121 ◽  
pp. 103767 ◽  
Author(s):  
Shunjiro Noguchi ◽  
Mizuho Nishio ◽  
Masahiro Yakami ◽  
Keita Nakagomi ◽  
Kaori Togashi

2020 ◽  
Vol 10 (5) ◽  
pp. 1040-1048 ◽  
Author(s):  
Xianwei Jiang ◽  
Liang Chang ◽  
Yu-Dong Zhang

More than 35 million patients are suffering from Alzheimer’s disease and this number is growing, which puts a heavy burden on countries around the world. Early detection is of benefit, in which the deep learning can aid AD identification effectively and gain ideal results. A novel eight-layer convolutional neural network with batch normalization and dropout techniques for classification of Alzheimer’s disease was proposed. After data augmentation, the training dataset contained 7399 AD patient and 7399 HC subjects. Our eight-layer CNN-BN-DO-DA method yielded a sensitivity of 97.77%, a specificity of 97.76%, a precision of 97.79%, an accuracy of 97.76%, a F1 of 97.76%, and a MCC of 95.56% on the test set, which achieved the best performance in seven state-of-the-art approaches. The results strongly demonstrate that this method can effectively assist the clinical diagnosis of Alzheimer’s disease.


2021 ◽  
Author(s):  
Ananda Ananda ◽  
Kwun Ho Ngan ◽  
Cefa Karabag ◽  
Eduardo Alonso ◽  
Alex Ter-Sarkisov ◽  
...  

This paper investigates the classification of radiographic images with eleven convolutional neural network (CNN) architectures (GoogleNet, VGG-19, AlexNet, SqueezeNet, ResNet-18, Inception-v3, ResNet-50, VGG-16, ResNet-101, DenseNet-201 and Inception-ResNet-v2). The CNNs were used to classify a series of wrist radiographs from the Stanford Musculoskeletal Radiographs (MURA) dataset into two classes - normal and abnormal. The architectures were compared for different hyper-parameters against accuracy and Cohen's kappa coefficient. The best two results were then explored with data augmentation. Without the use of augmentation, the best results were provided by Inception-Resnet-v2 (Mean accuracy = 0.723, Mean kappa = 0.506). These were significantly improved with augmentation to Inception-Resnet-v2 (Mean accuracy = 0.857, Mean kappa = 0.703). Finally, Class Activation Mapping was applied to interpret activation of the network against the location of an anomaly in the radiographs.


Sensors ◽  
2021 ◽  
Vol 21 (16) ◽  
pp. 5381
Author(s):  
Ananda Ananda ◽  
Kwun Ho Ngan ◽  
Cefa Karabağ ◽  
Aram Ter-Sarkisov ◽  
Eduardo Alonso ◽  
...  

This paper investigates the classification of radiographic images with eleven convolutional neural network (CNN) architectures (GoogleNet, VGG-19, AlexNet, SqueezeNet, ResNet-18, Inception-v3, ResNet-50, VGG-16, ResNet-101, DenseNet-201 and Inception-ResNet-v2). The CNNs were used to classify a series of wrist radiographs from the Stanford Musculoskeletal Radiographs (MURA) dataset into two classes—normal and abnormal. The architectures were compared for different hyper-parameters against accuracy and Cohen’s kappa coefficient. The best two results were then explored with data augmentation. Without the use of augmentation, the best results were provided by Inception-ResNet-v2 (Mean accuracy = 0.723, Mean kappa = 0.506). These were significantly improved with augmentation to Inception-ResNet-v2 (Mean accuracy = 0.857, Mean kappa = 0.703). Finally, Class Activation Mapping was applied to interpret activation of the network against the location of an anomaly in the radiographs.


2019 ◽  
Vol 28 (1) ◽  
pp. 3-12
Author(s):  
Jarosław Kurek ◽  
Joanna Aleksiejuk-Gawron ◽  
Izabella Antoniuk ◽  
Jarosław Górski ◽  
Albina Jegorowa ◽  
...  

This paper presents an improved method for recognizing the drill state on the basis of hole images drilled in a laminated chipboard, using convolutional neural network (CNN) and data augmentation techniques. Three classes were used to describe the drill state: red -- for drill that is worn out and should be replaced, yellow -- for state in which the system should send a warning to the operator, indicating that this element should be checked manually, and green -- denoting the drill that is still in good condition, which allows for further use in the production process. The presented method combines the advantages of transfer learning and data augmentation methods to improve the accuracy of the received evaluations. In contrast to the classical deep learning methods, transfer learning requires much smaller training data sets to achieve acceptable results. At the same time, data augmentation customized for drill wear recognition makes it possible to expand the original dataset and to improve the overall accuracy. The experiments performed have confirmed the suitability of the presented approach to accurate class recognition in the given problem, even while using a small original dataset.


Sign in / Sign up

Export Citation Format

Share Document