tomato plants
Recently Published Documents


TOTAL DOCUMENTS

4031
(FIVE YEARS 1032)

H-INDEX

97
(FIVE YEARS 12)

2022 ◽  
Vol 295 ◽  
pp. 110861
Author(s):  
Paulo Ricardo Oliveira-Pinto ◽  
Nuno Mariz-Ponte ◽  
Ana Torres ◽  
Fernando Tavares ◽  
Manuel Fernandes-Ferreira ◽  
...  

2022 ◽  
Vol 43 (2) ◽  
pp. 675-692
Author(s):  
Deise Silva Castro Pimentel Cardoso Cardoso ◽  
◽  
Herminia Emilia Prieto Martinez ◽  
Ariana Mota Pereira ◽  
Maria Catarina Megumi Kasuya ◽  
...  

Tomato plants respond well to potassium fertilization, whose insufficiency leads to a drop in fruit production and quality. On the other hand, the association of growth-promoting fungi (GPF) with roots has been shown to be able to optimize nutrient absorption, which implies lower financial costs and a decreased risk of loss of K applied to the soil. The objective of this study was to investigate the effects of inoculation with GPF and K rates on the postharvest quality of grape tomato hybrid ‘Mascot’ grown in a hydroponic system. The plants were cultivated in a hydroponic drip system using washed and sterilized sand as substrate. They were trained with two stems, leaving three bunches per stem. The experiment was carried out in a splitsplit-plot arrangement in a completely randomized design with three replicates. Ripe fruits were stored for 30 days in PET containers in storage chambers at a temperature of 25 °C. After 0, 10, 20 and 30 days of storage, five fruits were collected to determine the titratable acidity (TA) and soluble solids (SS), reducing sugars (RS) and vitamin C contents. The K rates provided an increase in the quality attributes. At low K rates, inoculation with GPF led to higher TA, SS, RS and vitamin C values. Inoculation of the plants with GPF improved the postharvest preservation of the fruits, especially when the plants underwent nutritional stress during cultivation.


Author(s):  
Magín González-Moscoso ◽  
Antonio Juárez-Maldonado ◽  
Gregorio Cadenas-Pliego ◽  
Diana Meza-Figueroa ◽  
Bhaskar SenGupta ◽  
...  

2022 ◽  
Vol 12 ◽  
Author(s):  
Maria Cristina Della Lucia ◽  
Ali Baghdadi ◽  
Francesca Mangione ◽  
Matteo Borella ◽  
Walter Zegada-Lizarazu ◽  
...  

This work aimed to study the effects in tomato (Solanum lycopersicum L.) of foliar applications of a novel calcium-based biostimulant (SOB01) using an omics approach involving transcriptomics and physiological profiling. A calcium-chloride fertilizer (SOB02) was used as a product reference standard. Plants were grown under well-watered (WW) and water stress (WS) conditions in a growth chamber. We firstly compared the transcriptome profile of treated and untreated tomato plants using the software RStudio. Totally, 968 and 1,657 differentially expressed genes (DEGs) (adj-p-value < 0.1 and |log2(fold change)| ≥ 1) were identified after SOB01 and SOB02 leaf treatments, respectively. Expression patterns of 9 DEGs involved in nutrient metabolism and osmotic stress tolerance were validated by real-time quantitative reverse transcription PCR (RT-qPCR) analysis. Principal component analysis (PCA) on RT-qPCR results highlighted that the gene expression profiles after SOB01 treatment in different water regimes were clustering together, suggesting that the expression pattern of the analyzed genes in well water and water stress plants was similar in the presence of SOB01 treatment. Physiological analyses demonstrated that the biostimulant application increased the photosynthetic rate and the chlorophyll content under water deficiency compared to the standard fertilizer and led to a higher yield in terms of fruit dry matter and a reduction in the number of cracked fruits. In conclusion, transcriptome and physiological profiling provided comprehensive information on the biostimulant effects highlighting that SOB01 applications improved the ability of the tomato plants to mitigate the negative effects of water stress.


2022 ◽  
Vol 23 (2) ◽  
pp. 728
Author(s):  
Bingbing Cai ◽  
Yu Ning ◽  
Qiang Li ◽  
Qingyun Li ◽  
Xizhen Ai

Tomato (Solanum lycopersicum) is one of the most important greenhouse vegetables, with a large cultivated area across the world. However, in northern China, tomato plants often suffer from low-temperature stress in solar greenhouse cultivation, which affects plant growth and development and results in economic losses. We previously found that a chloroplast aldolase gene in tomato, SlFBA4, plays an important role in the Calvin-Benson cycle (CBC), and its expression level and activity can be significantly altered when subjected to low-temperature stress. To further study the function of SlFBA4 in the photosynthesis and chilling tolerance of tomato, we obtained transgenic tomato plants by the over-expression and RNA interference (RNAi) of SlFBA4. The over-expression of SlFBA4 led to higher fructose-1,6-bisphosphate aldolase activity, net photosynthetic rate (Pn) and activity of other enzymes in the CBC than wild type. Opposite results were observed in the RNAi lines. Moreover, an increase in thousand-seed weight, plant height, stem diameter and germination rate in optimal and sub-optimal temperatures was observed in the over-expression lines, while opposite effects were observed in the RNAi lines. Furthermore, over-expression of SlFBA4 increased Pn and enzyme activity and decreased malonaldehyde (MDA) content under chilling conditions. On the other hand, Pn and MDA content were more severely influenced by chilling stress in the RNAi lines. These results indicate that SlFBA4 plays an important role in tomato growth and tolerance to chilling stress.


2022 ◽  
Vol 12 ◽  
Author(s):  
Paulami Koley ◽  
Subhadip Brahmachari ◽  
Amitava Saha ◽  
Camelia Deb ◽  
Monimala Mondal ◽  
...  

In the field of phytohormone defense, the general perception is that salicylate (SA)-mediated defense is induced against biotrophic pathogens while jasmonate (JA)-mediated defense functions against necrotrophic pathogens. Our goals were to observe the behavior of the necrotrophic pathogen Rhizoctonia solani in the vicinity, on the surface, and within the host tissue after priming the host with SA or JA, and to see if priming with these phytohormones would affect the host defense differently upon infection. It was observed for the first time, that R. solani could not only distinguish between JA versus SA-primed tomato plants from a distance, but surprisingly avoided SA-primed plants more than JA-primed plants. To corroborate these findings, early infection events were monitored and compared through microscopy, Scanning Electron Microscopy, and Confocal Laser Scanning Microscopy using transformed R. solani expressing green fluorescence protein gene (gfp). Different histochemical and physiological parameters were compared between the unprimed control, JA-primed, and SA-primed plants after infection. The expression of a total of fifteen genes, including the appressoria-related gene of the pathogen and twelve marker genes functioning in the SA and JA signaling pathways, were monitored over a time course during early infection stages. R. solani being traditionally designated as a necrotroph, the major unexpected observations were that Salicylate priming offered better tolerance than Jasmonate priming and that it was mediated through the activation of SA-mediated defense during the initial phase of infection, followed by JA-mediated defense in the later phase. Hence, the present scenario of biphasic SA-JA defense cascades during R. solani infection, with SA priming imparting maximum tolerance, indicate a possible hemibiotrophic pathosystem that needs to be investigated further.


2022 ◽  
Vol 10 (1) ◽  
pp. 136
Author(s):  
Elisabetta Mazzotta ◽  
Rita Muzzalupo ◽  
Adriana Chiappetta ◽  
Innocenzo Muzzalupo

In this research, a new ecofriendly and sustainable fungicide agent, with the ability to control Verticillium wilt, was developed. To this purpose, a green extract of olive leaf (OLE) was prepared by ultrasound-assisted extraction (UAE) and characterized in terms of polyphenol content and antioxidant activity. Then, OLE was loaded in chitosan nanoparticles (CTNPs) to combine the antifungal activity of CTNPs and phenolic compounds to obtain an important synergic effect. Nanoparticles were synthetized using the ionic gelation technique and characterized in terms of sizes, polydispersity index, Z-potential, encapsulation efficiency, and release profile. Qualitative and quantitative analyses of OLE were performed by the HPLC method. OLE-loaded CTNPs exhibited good physicochemical properties, such as a small size and positive surface charge that significantly contributed to a high antifungal efficacy against Verticillum dahliae. Therefore, their antifungal activity was evaluated in vitro, using the minimal inhibition concentration (MIC) assay in a concentration range between 0.071 and 1.41 mg/mL. Free OLE, blank CTNPs, and OLE-loaded CTNPs possessed MIC values of 0.35, 0.71, and 0.14 mg/mL, respectively. These results suggest an important synergic effect when OLE was loaded in CTNPs. Thereafter, we tested the two higher concentrations on tomato plants inoculated with V. dahliae, where no fungal growth was observed in the in vitro experiment, 0.71 and 1.41 mg/mL. Interestingly, OLE-loaded CTNPs at the higher concentration used, diminished the symptoms of Verticillium wilt in tomato plants inoculated with V. dahliae and significantly enhanced plant growth. This research offers promising results and opens the possibility to use OLE-loaded CTNPs as safe fungicides in the control strategies of Verticillium wilt at open field.


2022 ◽  
Vol 12 ◽  
Author(s):  
Fei Ding ◽  
Liming Ren ◽  
Fang Xie ◽  
Meiling Wang ◽  
Shuoxin Zhang

Both jasmonic acid (JA) and melatonin (MT) have been demonstrated to play positive roles in cold tolerance, however, whether and how they crosstalk in the cold responses in plants remain elusive. Here, we report that JA and MT act synergistically in the cold tolerance in tomato plants (Solanum lycopersicum). It was found that JA and MT were both substantially accumulated in response to cold stress and foliar applications of methyl jasmonate (MeJA) and MT promoted cold tolerance as evidenced by increased Fv/Fm, decreased relative electrolyte leakage (EL) and declined H2O2 accumulation in tomato plants. Inhibition of MT biosynthesis attenuated MeJA-induced cold tolerance, while inhibition of JA biosynthesis reduced MT accumulation in tomato plants under cold conditions. Furthermore, qRT-PCR analysis showed that the expressions of two MT biosynthetic genes, SlSNAT and SlAMST, were strongly induced by MeJA, whereas suppression of SlMYC2, a master JA signaling regulator, abated the expressions of SlSNAT and SlAMST under cold stress. Additionally, suppression of SlMYC2 reduced MT accumulation, decreased Fv/Fm and increased EL in cold-stressed tomato plants. Interestingly, exogenous MT promoted JA accumulation, while inhibition of MT biosynthesis significantly reduced JA accumulation in tomato plants under the cold condition. Taken together, these results suggest that JA and MT act cooperatively in cold tolerance and form a positive feedback loop, amplifying the cold responses of tomato plants. Our findings might be translated into the development of cold-resistant tomato cultivars by genetically manipulating JA and MT pathways.


Plant Direct ◽  
2022 ◽  
Vol 6 (1) ◽  
Author(s):  
Itay Cohen ◽  
Juliana Espada Lichston ◽  
Cristiane Elizabeth Costa Macêdo ◽  
Shimon Rachmilevitch

Sign in / Sign up

Export Citation Format

Share Document