Material Science

Author(s):  
Jiyang Yu
Keyword(s):  
Author(s):  
T. Hirayama ◽  
Q. Ru ◽  
T. Tanji ◽  
A. Tonomura

The observation of small magnetic materials is one of the most important applications of electron holography to material science, because interferometry by means of electron holography can directly visualize magnetic flux lines in a very small area. To observe magnetic structures by transmission electron microscopy it is important to control the magnetic field applied to the specimen in order to prevent it from changing its magnetic state. The easiest method is tuming off the objective lens current and focusing with the first intermediate lens. The other method is using a low magnetic-field lens, where the specimen is set above the lens gap.Figure 1 shows an interference micrograph of an isolated particle of barium ferrite on a thin carbon film observed from approximately [111]. A hologram of this particle was recorded by the transmission electron microscope, Hitachi HF-2000, equipped with an electron biprism. The phase distribution of the object electron wave was reconstructed digitally by the Fourier transform method and converted to the interference micrograph Fig 1.


2019 ◽  
Author(s):  
Federica Trudu ◽  
gloria tabacchi ◽  
Ettore Fois

1) main text file of the paper: "Computational modeling of open framework silicates: probing straight bond angles in ferrierite reveals intriguing links between mineralogy, nanomaterial science and technological applications"<div>by F. Trudu, G. Tabacchi, E. Fois (pdf file)</div><div>2) supporting information (pdf file)</div><div>3) zip folder containing relevant data files in cif format</div><div><br></div><div>Twitter handle of the submitting author:</div><div>@BL76276</div>


2019 ◽  
Vol 767 (1-2) ◽  
pp. 100-106 ◽  
Author(s):  
V.S. LESOVIK ◽  
◽  
E.V. FOMINA ◽  
A.M. AYZENSHTADT ◽  
◽  
...  

2019 ◽  
Vol 772 (7) ◽  
pp. 66-72
Author(s):  
V.V. STROKOVA ◽  
◽  
D.Yu. VLASOV ◽  
O.V. FRANK-KAMENETSKAYA ◽  
◽  
...  

2020 ◽  
Vol 26 (45) ◽  
pp. 5881-5891
Author(s):  
Tahseen Kamal ◽  
Sher Bahadar Khan ◽  
Abdullah M. Asiri

Normally, antibiotics are used for the growth inhibition of a variety of pathogens. The ever- increasing resistance of the various disease-causing pathogens to the antibiotics has drawn tremendous attention of researchers to find efficient alternatives. The recent era of modern material science and nanotechnology has made it possible to replace the existing antibiotics up to some extent. Currently, a vast library of materials has been prepared, which shows excellent performance against pathogens. Such materials consist of certain metals. Through this review, we present some notable studies concerning the antimicrobial activities of various metal containing compounds and their mode of action.


Coatings ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 423
Author(s):  
Hsien-Yeh Chen ◽  
Peng-Yuan Wang

The success of recent material science and applications in biotechnologies should be credited to developments of malleable surface properties, as well as the adaptation of conjugation reactions to the material surface [...]


Sign in / Sign up

Export Citation Format

Share Document