Variation of Stress Intensity Factor and Strain Energy Release Rate in Human Cortical Bone Using Finite Element Analysis

Author(s):  
Mohammad Shahril Salim ◽  
Anis Najwa Azahari ◽  
Ahmad Faizal Salleh ◽  
Ruslizam Daud ◽  
Hamzah Sakeran
2008 ◽  
Vol 33-37 ◽  
pp. 85-90
Author(s):  
Wei Xie ◽  
Qi Qing Huang ◽  
Masanori Kikuchi

In the virtual crack closure method (VCCM), the energy release rate is computed based on the results of finite element calculation, and the stress intensity factor (SIF) is computed from the energy release rate. In this paper, the stress intensity factor of mixed-mode surface cracks under three point bending is studied by using the three dimensional modified virtual crack closure method (MVCCM). The modified virtual crack closure method is required to open one element face area whose shape is arbitrary and finite element widths are unequal across the crack front. The effect of the distance between the location of load and crack face, crack shape and crack depth to the stress intensity factor is also discussed, along with practical results and conclusions.


Author(s):  
Curtis Sifford ◽  
Ali Shirani

Abstract This paper presents the application of the rules from ASME Section VIII, Division 3 of the ASME Boiler and Pressure Vessel Code for a fracture mechanics evaluation to determine the damage tolerance and fatigue life of a flowline clamp connector. The guidelines from API 579-1 / ASME FFS-1 Fitness-For-Service for the stress analysis of a crack-like flaw have been considered for this assessment. The crack tip is modeled using a refined mesh around the crack tip that is referred to as a focused mesh approach in API 579-1 / ASME FFS-1. The driving force method is used as an alternative to the failure assessment diagram method to account for the influence of crack tip plasticity. The J integral is determined using elastic-plastic finite element analysis and converted to an equivalent stress intensity factor to be compared to the fracture toughness of the material. The fatigue life is calculated using the Paris Law equation and the stress intensity factor calculated from the finite element analysis. The allowable number of design cycles is determined using the safety factors required from Division 3 of the ASME Pressure Vessel Code.


Sign in / Sign up

Export Citation Format

Share Document