Volume 5: High-Pressure Technology; Rudy Scavuzzo Student Paper Symposium and 27th Annual Student Paper Competition; ASME Nondestructive Evaluation, Diagnosis and Prognosis Division (NDPD)
Latest Publications


TOTAL DOCUMENTS

53
(FIVE YEARS 53)

H-INDEX

1
(FIVE YEARS 1)

Published By American Society Of Mechanical Engineers

9780791858967

Author(s):  
Will Lowry ◽  
Jihui Geng

Abstract A pressure vessel burst (PVB) is an explosion scenario commonly encountered at chemical processing and petroleum refining facilities. Existing methodologies are available to predict the blast loads resulting from a spherical or cylindrical PVB source, with the PVB source either at grade or at an elevation. In the case of an elevated PVB source, the resulting blast wave will reflect from the ground at an angle. This ground level reflection will result in the formation of a Mach stem at certain angles between the incident blast wave and ground, with the required angles dependent on the blast wave overpressure. The triple point associated with the Mach stem moves upwards as the Mach stem progresses forwards, which can create a region of high blast pressure. This paper focuses on the investigation of a methodology that can be used to determine the high-pressure region generated by the Mach stem, along with the associated blast pressure, as a function of the PVB source elevation and incident blast pressure.


Author(s):  
Jian Shuai ◽  
Yinhui Zhang ◽  
Zhiyang Lv ◽  
Yaodong Shuai

Abstract High grade pipelines have been the majority in China since the beginning of this century. Some pipelines in mountainous area and other places experienced the ground movement because of geohazards and the disturb of construction activities. The strain capacity is important to keep pipelines subjected to tensile displacement in safe. However, the strain capacity does not depend on the pipe body but on the girth weld because the girth weld is always non-homogeneous. The strain concentration may happen where material yields in advance. Therefore, the strength matching of the girth weld towards pipe body can greatly affects strain capacity of pipelines. Generally, girth weld is designed to over-matching to prevent the strain concentration. However, in pipeline engineering, actual strength of pipe body may be much higher than the specified minimum yield stress, leading the girth weld to be under-matching in fact. In addition, even in over-matching girth weld, there may be softening zone in HAZ. In this paper, the tensile tests of X80 girth weld were performed. Local constitutive relations at the weld, pipe body and HAZ were obtained by using the whole field strain on the specimens. The experiment showed under-matching in the specimen. Based on the results of local constitutive properties of the specimen, the finite element model of X80 pipeline girth weld subjected to tensile strain and inner pressure was established. It demonstrated that strain concentration happened in weld area in under-matching girth weld and softening zone in over-matching girth weld. Inner pressure has an impact on strain concentration in a case that strain exceed the certain limit.


Author(s):  
Wung Jae Wang ◽  
Man Sung Yim

Abstract In Nuclear power plants, Main steam safety valve (MSSV) is a barrier to prevent overpressure of steam flow by opening the secondary cycle to the atmosphere. Since MSSVs operate at condition of high temperature and pressure, they have possibility for stuck-open failure. If this accident occurs, large amount of steam or gases release through failed MSSV. It may lead Thermally-induced Steam generator tube rupture (TI-SGTR) due to sudden high gradient of temperature and pressure. With loss of electrical power, TI-SGTR occurs, Core will start to melt in 2–3hours after loss of electrical power. When TI-SGTR occurs with core melt, Leakage of radioactive material occurs through MSSV to environment. Though the probability of an accident is very low, the release of radioactive material can lead large cancer risk to the public. Therefore, many studies to mitigate the radioactive materials are in progress such as diversion to containment building or capturing with external mitigation system. In this study, we are focusing on this capturing device. The objective of this study is to analyze integrity of mitigation device using fluid behavior from MSSV to capturing pipe. Hydraulic conditions at safety valve inlet were used from previous researches. Using commercial simulation software, computational fluid dynamics (CFD) analysis was performed for distribution of fluid temperature, pressure, velocity in MSSV and pipes. For structural safety assessment, 1-way Fluid-Structure interaction (FSI) method was used. CFD result was applied for load on structure surfaces to simulate transient structural analysis of mitigation device. As a result, stresses, strains of capturing pipe were calculated and integrity was discussed.


Author(s):  
Konstantinos Chatziioannou ◽  
Yuner Huang ◽  
Spyros A. Karamanos

Abstract Industrial steel piping components are often subjected to severe cyclic loading conditions which introduce large inelastic strains and can lead to low-cycle fatigue. Modeling of their structural response requires the simulation of material behavior under strong repeated loading, associated with large strain amplitudes of alternate sign. Accurate numerical predictions of low-cycle fatigue depend strongly on the selection of cyclic-plasticity model in terms of its ability to predict accurately strain at critical location and its accumulation (referred to as “ratcheting”). It also depends on the efficient numerical integration of the material model within a finite element environment. In the context of von Mises metal plasticity, the implementation of an implicit numerical integration scheme for predicting the cyclic response of piping components is presented herein, suitable for large-scale structural computations. The constitutive model is formulated explicitly for shell-type (plane-stress) components, suitable for efficient analysis of piping components whereas the numerical scheme has been developed in a unified manner, allowing for the consideration of a wide range of hardening rules, which are capable of describing accurately strain ratcheting. The numerical scheme is implemented in a general-purpose finite element software as a material-user subroutine, with the purpose of analyzing a set of large-scale physical experiments on elbow specimens undergoing constant-amplitude in-plane cyclic bending. The accuracy of three advanced constitutive models in predicting the elbow response, in terms of both global structural response and local strain amplitude/accumulation, is validated by direct comparison of numerical results with experimental data, highlighting some key issues associated with the accurate simulation of multiaxial ratcheting phenomena. The very good comparison between numerical and experimental results, indicates that the present numerical methodology and, in particular, its implementation into a finite element environment, can be used for the reliable prediction of mechanical response of industrial piping elbows, under severe inelastic repeated loading.


Author(s):  
Adam Christopherson ◽  
Young-Hoon Han

Abstract Strain gauges provide a convenient and affordable method to accurately measure the strain field for complex systems. Not only do they provide crucial information for predicting the fatigue life of components, but they can also determine the principle stresses which can be used to compare design factors with accepted industry standards. The use of electrical resistance strain gauges for load verification has become an ever-increasing practice in the design of subsea connectors as evidenced by the recent application in the industry guidance API 17TR7 [1]. The design is aided by the development of a Finite Element Analysis (FEA) which is used to predict the load capacities for normal, extreme, and survival conditions. The present work describes the experimental validation of a 18-3/4in 10,000 psi subsea collet connector model by applying linear pattern CEA-06-062UW-350 strain gauges at discrete points along the circumferentially spaced collet segments. The collet segments are the selected components for strain gauge placement because not only are they the primary connecting element between the subsea wellhead and the connector body, but they also only support axial loads. The axial strain of the collet segments in tension were compared at two combined loading cases: maximum bending capacity with and without internal working pressure and found to be in good correlation with the elastic-plastic FEA. The experimentally validated FEA is a crucial tool in determining the connector’s application to project or customer specific load and fatigue requirements and eliminates the need for unnecessary experimentation.


Author(s):  
Daniel T. Peters ◽  
Myles Parr ◽  
Matthew Naugle

Abstract The use of high-pressure vessels for the purpose of storing gaseous fuels for land based transportation application is becoming common. Fuels such as natural gas and hydrogen are currently being stored at high pressure for use in fueling stations. This paper will investigate the use of autofrettage in high pressure cylinders and its effects on the life of a vessel used for gas storage. Unlike many high-pressure vessels, the life is controlled by fatigue when cycled between a high pressure near the design pressure and a lower pressure due to the emptying of the content of the vessels.


Author(s):  
Sylvester Agbo ◽  
Meng Lin ◽  
Iman Ameli ◽  
Ali Imanpour ◽  
Da-Ming Duan ◽  
...  

Abstract Pipelines subjected to displacement-controlled loading such as ground movement may experience significant longitudinal strain. This can potentially impact pipeline structural capacity and their leak-tight integrity. Reliable calibration of the tensile strain capacity (TSC) of pipelines plays a critical role in strain-based design (SBD) methods. Recent studies were focused mostly on high toughness modern pipelines, while limited research was performed on lower-grade vintage pipelines. However, a significant percentage of energy resources in North America is still being transported in vintage pipelines. Eight full-scale pressurized four-point bending tests were previously conducted on X42, NPS 22 vintage pipes with 12.7 mm wall thickness to investigate the effect of internal pressure and flaw size on TSC. The pipes were subjected to 80% and 30% specified minimum yield strength (SMYS) internal pressures with different girth weld flaw sizes machined at the girth weld center line. This paper evaluates the TSC of X42 vintage pipeline by utilizing ductile fracture mechanics models using damage plasticity models in ABAQUS extended finite element method (XFEM). The damage parameters required for simulating crack initiation and propagation in X42 vintage pipeline are calibrated numerically by comparing the numerical models with the full-scale test results. With the appropriate damage parameters, the numerical model can reasonably reproduce the full-scale experimental test results and can be used to carry out parametric analysis to characterize the effect of internal pressure and flaw size on TSC of X42 vintage pipes.


Author(s):  
Megan K. Tribble ◽  
Jerome H. Stofleth

Abstract Sandia National Laboratories was tasked by the United States Army Recovered Chemical Materiel Directorate with evaluating the fitness of the Transportable Detonation Chamber for use in demilitarization of chemical munitions. The chamber was instrumented with strain, pressure, and acceleration sensors to study its behavior during explosive tests ranging from 1.25 to 20 lb of explosive charge weight. The structural response of the chamber and techniques recommended by the manufacturer — use of water bags and sand-filled walls — were assessed. Through this testing, it was found that the two techniques did not significantly affect the chamber’s response. It was also discovered that the structural integrity of the chamber (and, therefore, its suitability for use with chemical agents) was compromised, as some welds failed. Sandia does not recommend using this vessel for chemical munition demilitarization. This chamber is suitable, however, for demilitarization of conventional munitions, in which fragments and overpressure are the primary concern.


Author(s):  
Chao Yong Zong ◽  
Feng Jie Zheng ◽  
Xue Guan Song

Abstract A pressure safety valve (PSV) is a safety valve designed to protect a vessel or a system during an overpressure event. For pressure safety valve to perform its function, the lift force as one of the key factors influencing the overall performance must be predicted. However, the lift force shows discontinuity with the increase of the valve opening under certain situations. This discontinuity could cause a series of problems, such as dynamic instability. In order to deeply explore the mechanism of the discontinuities numerical and experimental investigation were performed on a direct operated PSV in this paper. A test rig was constructed to measure the steady state lift forces at different valve openings. The working fluid was air and the valve body was removed. To obtain the details of the flow inside the valve, a series of computational fluid dynamics (CFD) simulations were conducted. The simulation indicated that the changing flow pattern is the main cause of the lift force discontinuity and the flow pattern is very sensitive to the valve nozzle thickness and the position of the adjustment ring. Thus, the lift force discontinuity could be weakened or even eliminated by proper valve design.


Author(s):  
Mahmoud Ibrahim ◽  
Sherif Hassanien ◽  
Lyndon Lamborn ◽  
Yvan Hubert

Abstract The integrity of transmission oil pipelines are often managed through in-line inspections (ILI) at regular intervals. For the last two decades, such ILI-based integrity programs along with excavations and field non-destructive testing (NDE) have proven their effectiveness in terms of reliability. In a few cases, some pipes contain; for example, a unique cracking mechanism exhibited by short, deep axial cracks located in the vicinity of girth welds. These attributes pose sizing difficulties for ultrasonic crack ILI tools. Accordingly, operators may lean on supplemental integrity activities to prove the safety of the pipelines such as; but not limited to, hydrostatic testing, laboratory testing of cut-outs, qualitative ranking of features, borehole leak detection analysis, Just-Missed-Flaw (JMF) or Just Surviving Flaw (JSF) analysis, discharge and/or point pressure restrictions, and/or a mix between all the previous techniques. Moreover, it is the operators’ responsibility to evaluate the risk associated with their integrity plans. Hence, it is important to be able to analyze the reliability of such integrity activities quantitatively. This paper presents an event-tree approach which can augment standard ILI or hydrostatic test results and probabilistic analysis with non-ILI integrity measures under one umbrella. In this approach, the likelihood of failure for both leak and rupture modes can be comprehensively estimated. The event tree approach is used herein as an inductive analytical diagram in which failure events are analyzed using Boolean logic to examine a chronological series of subsequent integrity actions and consequences. The proposed approach is also designed to capture subject matter experts’ opinion into the analysis as part of the integrity management program. The work discusses a real practical application along with verification and validation elements of the proposed integrated approach.


Sign in / Sign up

Export Citation Format

Share Document