Real-Time Facial Emotion Recognition Using Deep Learning

Author(s):  
Shruti Chand ◽  
Apoorva Singh ◽  
Ria Bhatia ◽  
Ishween Kaur ◽  
K. R. Seeja
2021 ◽  
Vol 1827 (1) ◽  
pp. 012130
Author(s):  
Qi Li ◽  
Yun Qing Liu ◽  
Yue Qi Peng ◽  
Cong Liu ◽  
Jun Shi ◽  
...  

Author(s):  
Ajeet Ram Pathak ◽  
Somesh Bhalsing ◽  
Shivani Desai ◽  
Monica Gandhi ◽  
Pranathi Patwardhan

2021 ◽  
Vol 11 (22) ◽  
pp. 10540
Author(s):  
Navjot Rathour ◽  
Zeba Khanam ◽  
Anita Gehlot ◽  
Rajesh Singh ◽  
Mamoon Rashid ◽  
...  

There is a significant interest in facial emotion recognition in the fields of human–computer interaction and social sciences. With the advancements in artificial intelligence (AI), the field of human behavioral prediction and analysis, especially human emotion, has evolved significantly. The most standard methods of emotion recognition are currently being used in models deployed in remote servers. We believe the reduction in the distance between the input device and the server model can lead us to better efficiency and effectiveness in real life applications. For the same purpose, computational methodologies such as edge computing can be beneficial. It can also encourage time-critical applications that can be implemented in sensitive fields. In this study, we propose a Raspberry-Pi based standalone edge device that can detect real-time facial emotions. Although this edge device can be used in variety of applications where human facial emotions play an important role, this article is mainly crafted using a dataset of employees working in organizations. A Raspberry-Pi-based standalone edge device has been implemented using the Mini-Xception Deep Network because of its computational efficiency in a shorter time compared to other networks. This device has achieved 100% accuracy for detecting faces in real time with 68% accuracy, i.e., higher than the accuracy mentioned in the state-of-the-art with the FER 2013 dataset. Future work will implement a deep network on Raspberry-Pi with an Intel Movidious neural compute stick to reduce the processing time and achieve quick real time implementation of the facial emotion recognition system.


2021 ◽  
Author(s):  
Naveen Kumari ◽  
Rekha Bhatia

Abstract Facial emotion recognition extracts the human emotions from the images and videos. As such, it requires an algorithm to understand and model the relationships between faces and facial expressions, and to recognize human emotions. Recently, deep learning models are extensively utilized enhance the facial emotion recognition rate. However, the deep learning models suffer from the overfitting issue. Moreover, deep learning models perform poorly for images which have poor visibility and noise. Therefore, in this paper, a novel deep learning based facial emotion recognition tool is proposed. Initially, a joint trilateral filter is applied to the obtained dataset to remove the noise. Thereafter, contrast-limited adaptive histogram equalization (CLAHE) is applied to the filtered images to improve the visibility of images. Finally, a deep convolutional neural network is trained. Nadam optimizer is also utilized to optimize the cost function of deep convolutional neural networks. Experiments are achieved by using the benchmark dataset and competitive human emotion recognition models. Comparative analysis demonstrates that the proposed facial emotion recognition model performs considerably better compared to the competitive models.


Author(s):  
Suchitra Saxena ◽  
Shikha Tripathi ◽  
Sudarshan Tsb

This research work proposes a Facial Emotion Recognition (FER) system using deep learning algorithm Gated Recurrent Units (GRUs) and Robotic Process Automation (RPA) for real time robotic applications. GRUs have been used in the proposed architecture to reduce training time and to capture temporal information. Most work reported in literature uses Convolution Neural Networks (CNN), Hybrid architecture of CNN with Long Short Term Memory (LSTM) and GRUs. In this work, GRUs are used for feature extraction from raw images and dense layers are used for classification. The performance of CNN, GRUs and LSTM are compared in the context of facial emotion recognition. The proposed FER system is implemented on Raspberry pi3 B+ and on Robotic Process Automation (RPA) using UiPath RPA tool for robot human interaction achieving 94.66% average accuracy in real time.


2016 ◽  
Vol 139 (11) ◽  
pp. 16-19 ◽  
Author(s):  
Rituparna Halder ◽  
Sushmit Sengupta ◽  
Arnab Pal ◽  
Sudipta Ghosh ◽  
Debashish Kundu

2021 ◽  
Author(s):  
Devanshu Shah ◽  
Khushi Chavan ◽  
Sanket Shah ◽  
Pratik Kanani

Sign in / Sign up

Export Citation Format

Share Document