Lung Cancer Detection Using Improvised Grad-Cam++ With 3D CNN Class Activation

Author(s):  
Eali Stephen Neal Joshua ◽  
Midhun Chakkravarthy ◽  
Debnath Bhattacharyya
2021 ◽  
Vol 2078 (1) ◽  
pp. 012048
Author(s):  
Jiasheng Ni

Abstract Remote medical prognosis application is a category of medical tests tool designed to collect patients’ body conditions and offer diagnosis results synchronously. However, most online applications are predicated on a simple chat bot which typically redirect patients to other online medical websites, which undermines the user experience and may prompt useless information for their reference. To tackle these issues, this paper proposed a medical prognosis application with deep learning techniques for a more responsive and intelligent medical prognosis procedure. This application can be break down into three parts-lung cancer detection, a database-supporting medical QA bot and a Hierarchical Bidirectional LSTM model (HBDA). A 3D-CNN model is built for the lung cancer detection, with a sequence of sliced CT images as inputs and outputs a probability scaler for tumor indications. A knowledge graph is applied in the medical QA bot implementation and the HBDA model is designed for semantic segmentation in order to better capture users’ intention in medical questions. For the performance of the medical prognosis, since we have limited computer memory, the 3D-CNN didn’t perform very well on detecting tumor conditions in the CT images with accuracy at around 70%. The knowledge graph-based medical QA bot intelligently recognize the underlying pattern in patients’ question and delivered decent medical response. The HBDA model performs well on distinguish the similarities and disparities between various medical questions, reaching accuracy at 90%. These results shed light for the feasibility of utilizing deep learning techniques such as 3D-CNN, Knowledge Graph, and Hierarchical Bi-directional LSTM to simulate the medical prognosis process.


2021 ◽  
pp. 157-180
Author(s):  
Siddhant Panda ◽  
Vasudha Chhetri ◽  
Vikas Kumar Jaiswal ◽  
Sourabh Yadav

Lung cancer is the foremost cause of cancer-related deaths world-wide [1]. It affects 100,000 Americans of the smoking population every year of all age groups, particularly those above 50 years of the smoking population [2]. In India, 51,000 lung cancer deaths were reported in 2012, which include 41,000 men and 10,000 women [3]. It is the leading cause of cancer deaths in men; however, in women, it ranked ninth among all cancerous deaths [4]. It is possible to detect the lung cancer at a very early stage, providing a much higher chance of survival for the patients.


Sign in / Sign up

Export Citation Format

Share Document