synthesis of nanomaterials
Recently Published Documents


TOTAL DOCUMENTS

265
(FIVE YEARS 112)

H-INDEX

25
(FIVE YEARS 6)

2022 ◽  
pp. 312-337
Author(s):  
Ashajyothi C. ◽  
Harish K. Handral ◽  
Prabhurajeshwar C.

Nanomaterials have been attracting the attention of many researchers because of their size, high stability, affinity, and selectivity nature. Over the past decades, considerable intensive studies on many metal and metal-oxide nanomaterials have drawn consideration through their significant properties like size, shape, surface mass proportion, and their reactivity; all these properties are fundamental cornerstones for the turn of events and use of nanomaterials and nanoscale gadgets in biomedical areas. There is also a vast scope for a broad range of biofunctional applications such as antibacterial, antiviral, antifungal, antitumor, bioimaging, tissue engineering, biosensors, gene, and drug delivery. The authors review the nature, forms, and synthesis of nanomaterials here, with a thorough biological synthesis assessment. They also address the development of nanoparticles by microorganisms in depth, and this chapter also includes updates on different biological and biomedical applications of these bionanomaterials.


2021 ◽  
Author(s):  
Muhammad Akhsin Muflikhun ◽  
Rahmad Kuncoro Adi ◽  
Gil Nonato C. Santos

The synthesis of nanomaterials has been reported by many researchers using different methods. One of the methods that can be used with perfect pureness and have less pollution in the synthesized materials results is the vapor phase growth technique (VPGT). Several types of nano shapes materials were reported such as nanoparticles, nanorods, nano triangular, nanosphere, and nanocrystal. The synthesis method has a fundamental process where the nanomaterials evaporated and condensed based on the temperature difference. There are three important variables, i.e., stochiometric ratio of source materials, temperature and baking time. The synthesis was occured in the quartz tube and sealed in the vacuum condition. This create the material was synthesis in pure and isolated conditions. The application of the nanomaterials synthesized via Horizontal Vapor Phase Growth (HVPG) can be implemented in anti-pathogen, anti-bacterial, gas sensing and coating applications.


Nanomaterials ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 3270
Author(s):  
Olga Lebedeva ◽  
Dmitry Kultin ◽  
Leonid Kustov

The review considers the features of the processes of the electrochemical synthesis of nanostructures in ionic liquids (ILs), including the production of carbon nanomaterials, silicon and germanium nanoparticles, metallic nanoparticles, nanomaterials and surface nanostructures based on oxides. In addition, the analysis of works on the synthesis of nanoscale polymer films of conductive polymers prepared using ionic liquids by electrochemical methods is given. The purpose of the review is to dwell upon an aspect of the applicability of ILs that is usually not fully reflected in modern literature, the synthesis of nanostructures (including unique ones that cannot be obtained in other electrolytes). The current underestimation of ILs as an electrochemical medium for the synthesis of nanomaterials may limit our understanding and the scope of their potential application. Another purpose of our review is to expand their possible application and to show the relative simplicity of the experimental part of the work.


Materials ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 6952
Author(s):  
Barbara Pawelec ◽  
Rut Guil-López ◽  
Noelia Mota ◽  
Jose Fierro ◽  
Rufino Navarro Yerga

There is a large worldwide demand for light olefins (C2=–C4=), which are needed for the production of high value-added chemicals and plastics. Light olefins can be produced by petroleum processing, direct/indirect conversion of synthesis gas (CO + H2) and hydrogenation of CO2. Among these methods, catalytic hydrogenation of CO2 is the most recently studied because it could contribute to alleviating CO2 emissions into the atmosphere. However, due to thermodynamic reasons, the design of catalysts for the selective production of light olefins from CO2 presents different challenges. In this regard, the recent progress in the synthesis of nanomaterials with well-controlled morphologies and active phase dispersion has opened new perspectives for the production of light olefins. In this review, recent advances in catalyst design are presented, with emphasis on catalysts operating through the modified Fischer–Tropsch pathway. The advantages and disadvantages of olefin production from CO2 via CO or methanol-mediated reaction routes were analyzed, as well as the prospects for the design of a single catalyst for direct olefin production. Conclusions were drawn on the prospect of a new catalyst design for the production of light olefins from CO2.


Nanomaterials ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 2842
Author(s):  
Giovanni Benelli

Nanomaterials possess valuable physical and chemical properties, which may make them excellent candidates for the development of new insecticides, acaricides, fungicides, drugs, catalysts, and sensors, to cite just some key categories [...]


The bio-mediated nanomaterials have expected growing responsiveness due to an increasing requirement to develop naturally nonthreatening technologies in nanomaterial synthesis. Biotic ways to prepare nanomaterials through extracts from the plant (includes stems, leaves, flowers, and roots) and microorganisms were recommended as likely replacements for physical and chemical routes due to their solvent medium and environment eco-friendliness and nontoxicity. This chapter focuses on electrocatalyst prepared by various bio-mediated synthetic ways and used as a green and eco-friendly electrocatalyst to recognize extensive chemical and biologically essential molecules with improved selectivity and sensitivity with low detection limit. The bio-mediated nanocomposite formation processes and their unique properties surface functionalization and electron transfer mechanism discussed in connection with the design and fabrication of sensors. As a final point, the encounters and prospects in developing bio-mediated nanomaterials-based electrochemical sensing technology was outlined.


Sign in / Sign up

Export Citation Format

Share Document