Automatic Regional Estimation of Myocardial Strain Using Deep Learning

2021 ◽  
pp. 41-48
Author(s):  
Wafa Baccouch ◽  
Sameh Oueslati ◽  
Basel Solaiman ◽  
Salam Labidi
2020 ◽  
Vol 2 (1) ◽  
pp. e190032
Author(s):  
Edward Ferdian ◽  
Avan Suinesiaputra ◽  
Kenneth Fung ◽  
Nay Aung ◽  
Elena Lukaschuk ◽  
...  

2021 ◽  
Vol 94 (1120) ◽  
pp. 20201101
Author(s):  
Julia Karr ◽  
Michael Cohen ◽  
Samuel A McQuiston ◽  
Teja Poorsala ◽  
Christopher Malozzi

Objective: Left-ventricular (LV) strain measurements with the Displacement Encoding with Stimulated Echoes (DENSE) MRI sequence provide accurate estimates of cardiotoxicity damage related to chemotherapy for breast cancer. This study investigated an automated and supervised deep convolutional neural network (DCNN) model for LV chamber quantification before strain analysis in DENSE images. Methods: The DeepLabV3 +DCNN with three versions of ResNet-50 backbone was designed to conduct chamber quantification on 42 female breast cancer data sets. The convolutional layers in the three ResNet-50 backbones were varied as non-atrous, atrous and modified, atrous with accuracy improvements like using Laplacian of Gaussian filters. Parameters such as LV end-diastolic diameter (LVEDD) and ejection fraction (LVEF) were quantified, and myocardial strains analyzed with the Radial Point Interpolation Method (RPIM). Myocardial classification was validated with the performance metrics of accuracy, Dice, average perpendicular distance (APD) and others. Repeated measures ANOVA and intraclass correlation (ICC) with Cronbach’s α (C-Alpha) tests were conducted between the three DCNNs and a vendor tool on chamber quantification and myocardial strain analysis. Results: Validation results in the same test-set for myocardial classification were accuracy = 97%, Dice = 0.92, APD = 1.2 mm with the modified ResNet-50, and accuracy = 95%, Dice = 0.90, APD = 1.7 mm with the atrous ResNet-50. The ICC results between the modified ResNet-50, atrous ResNet-50 and vendor-tool were C-Alpha = 0.97 for LVEF (55±7%, 54±7%, 54±7%, p = 0.6), and C-Alpha = 0.87 for LVEDD (4.6 ± 0.3 cm, 4.6 ± 0.3 cm, 4.6 ± 0.4 cm, p = 0.7). Conclusion: Similar performance metrics and equivalent parameters obtained from comparisons between the atrous networks and vendor tool show that segmentation with the modified, atrous DCNN is applicable for automated LV chamber quantification and subsequent strain analysis in cardiotoxicity. Advances in knowledge: A novel deep-learning technique for segmenting DENSE images was developed and validated for LV chamber quantification and strain analysis in cardiotoxicity detection.


2021 ◽  
Author(s):  
Manuel Morales ◽  
Maaike van den Boomen ◽  
Christopher Nguyen ◽  
Jayashree Kalpathy-Cramer ◽  
Bruce Rosen ◽  
...  

Myocardial strain analysis from cinematic magnetic resonance imaging (cine-MRI) data could provide a more thorough characterization of cardiac mechanics than volumetric parameters such as left-ventricular ejection fraction, but sources of variation including segmentation and motion estimation have limited its wide clinical use. We designed and validated a deep learning (DL) workflow to generate both volumetric parameters and strain measures from cine-MRI data, including strain rate (SR) and regional strain polar maps, consisting of segmentation and motion estimation convolutional neural networks developed and trained using healthy and cardiovascular disease (CVD) subjects (n=150). DL-based volumetric parameters were correlated (>0.98) and without significant bias relative to parameters derived from manual segmentations in 50 healthy and CVD subjects. Compared to landmarks manually-tracked on tagging-MRI images from 15 healthy subjects, landmark deformation using DL-based motion estimates from paired cine-MRI data resulted in an endpoint-error of 2.9 (1.5) mm. Measures of end-systolic global strain from these cine-MRI data showed no significant biases relative to a tagging-MRI reference method. On 4 healthy subjects, intraclass correlation coefficient for intrascanner repeatability was excellent (>0.95) for strain, moderate to excellent for SR (0.690-0.963), and good to excellent (0.826-0.994) in most polar map segments. Absolute relative change was within ~5% for strain, within ~10% for SR, and <1% in half of polar map segments. In conclusion, we developed and evaluated a DL-based, end-to-end fully-automatic workflow for global and regional myocardial strain analysis to quantitatively characterize cardiac mechanics of healthy and CVD subjects based on ubiquitously acquired cine-MRI data.


Author(s):  
Stellan Ohlsson
Keyword(s):  

2019 ◽  
Vol 53 (3) ◽  
pp. 281-294
Author(s):  
Jean-Michel Foucart ◽  
Augustin Chavanne ◽  
Jérôme Bourriau

Nombreux sont les apports envisagés de l’Intelligence Artificielle (IA) en médecine. En orthodontie, plusieurs solutions automatisées sont disponibles depuis quelques années en imagerie par rayons X (analyse céphalométrique automatisée, analyse automatisée des voies aériennes) ou depuis quelques mois (analyse automatique des modèles numériques, set-up automatisé; CS Model +, Carestream Dental™). L’objectif de cette étude, en deux parties, est d’évaluer la fiabilité de l’analyse automatisée des modèles tant au niveau de leur numérisation que de leur segmentation. La comparaison des résultats d’analyse des modèles obtenus automatiquement et par l’intermédiaire de plusieurs orthodontistes démontre la fiabilité de l’analyse automatique; l’erreur de mesure oscillant, in fine, entre 0,08 et 1,04 mm, ce qui est non significatif et comparable avec les erreurs de mesures inter-observateurs rapportées dans la littérature. Ces résultats ouvrent ainsi de nouvelles perspectives quand à l’apport de l’IA en Orthodontie qui, basée sur le deep learning et le big data, devrait permettre, à moyen terme, d’évoluer vers une orthodontie plus préventive et plus prédictive.


Sign in / Sign up

Export Citation Format

Share Document