strain estimation
Recently Published Documents


TOTAL DOCUMENTS

278
(FIVE YEARS 42)

H-INDEX

29
(FIVE YEARS 2)

2022 ◽  
pp. 016173462110688
Author(s):  
Aleksandra Wilczewska ◽  
Szymon Cygan ◽  
Jakub Żmigrodzki

Although the two dimensional Speckle Tracking Echocardiography has gained a strong position among medical diagnostic techniques in cardiology, it still requires further developments to improve its repeatability and reliability. Few works have attempted to incorporate the left ventricle segmentation results in the process of displacements and strain estimation to improve its performance. We proposed the use of mask information as an additional penalty in the elastic image registration based displacements estimation. This approach was studied using a short axis view synthetic echocardiographic data, segmented using an active contour method. The obtained masks were distorted to a different degree, using different methods to assess the influence of the segmentation quality on the displacements and strain estimation process. The results of displacements and circumferential strain estimations show, that even though the method is dependent on the mask quality, the potential loss in accuracy due to the poor segmentation quality is much lower than the potential accuracy gain in cases where the segmentation performs well.


Author(s):  
Bo Wang ◽  
Chen Sun ◽  
Keming Zhang ◽  
Jubing Chen

Abstract As a representative type of outlier, the abnormal data in displacement measurement often inevitably occurred in full-field optical metrology and significantly affected the further evaluation, especially when calculating the strain field by differencing the displacement. In this study, an outlier removal method is proposed which can recognize and remove the abnormal data in optically measured displacement field. A iterative critical factor least squares algorithm (CFLS) is developed which distinguishes the distance between the data points and the least square plane to identify the outliers. A successive boundary point algorithm is proposed to divide the measurement domain to improve the applicability and effectiveness of the CFLS algorithm. The feasibility and precision of the proposed method are discussed in detail through simulations and experiments. Results show that the outliers are reliably recognized and the precision of the strain estimation is highly improved by using these methods.


2021 ◽  
Vol 31 (2) ◽  
pp. 98
Author(s):  
Irwan Meilano ◽  
Susilo Susilo ◽  
Endra Gunawan ◽  
Suchi Rahmadani

On September 12, 2007, a M8.5 megathrust earthquake occurred along the Sunda trench near Bengkulu, West Sumatra. GPS data in Sumatra have indicated the coseismic and postseismic deformations resulting from this earthquake. Our estimate of coseismic displacements suggests that the earthquake displaced up to ~1.8m at GPS stations located north of the epicenter. Moreover, our principal strain estimation in the region suggests that the maximum coseismic extensional strain is ~40 ppm. Our analysis of GPS data in the region suggests that the postseismic decay of the 2007 Bengkulu earthquake was 46 days, estimated using a logarithmic function.


2021 ◽  
Author(s):  
Jiayue Li ◽  
Ewelina Pijewska ◽  
Qi Fang ◽  
Maciej Szkulmowski ◽  
Brendan Kennedy

Author(s):  
Shreebanta Kumar Jena ◽  
Punit Arora ◽  
Suneel Gupta ◽  
J. Chattopadhyay

The present study is aimed at validation of notch stress/ strain estimation schemes such as classical Neuber, Hoffmann-Seeger and recently developed Ince-Glinka method for Nuclear piping material (low C-Mn steel). The study has considered different constraints, loading conditions, various hole sizes to accommodate strain gradient variations and equivalent peak strains. The notch stress field evaluated using these schemes is compared with corresponding stress using elastic-plastic Finite Element (FE) analyses. The comparisons have brought out that the Hoffmann-Seeger scheme results in reasonably accurate assessment of stress localization nearly for all constraint geometries, loadings and strain gradients. However, the classical Neuber scheme is more suitable for low constraint geometries and intermediate constraint geometries whereas it results in under-estimation of maximum principal stress for high constraint geometries, thereby leading to over-prediction of fatigue life. Further, the suitability of energy equivalence equations of Ince-Glinka model for individual stress components, has been reviewed.


2021 ◽  
Author(s):  
Yuanyuan Wang ◽  
Xia Xie ◽  
Qiong He ◽  
Hongen Liao ◽  
Huabin Zhang ◽  
...  
Keyword(s):  

Author(s):  
Conner C. Earl ◽  
Frederick W. Damen ◽  
Melissa Yin ◽  
Kristiina L. Aasa ◽  
Sarah K. Burris ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document