Investigation of Effect of EDM Process Variables on Material Removal Rate and Tool Wear Rate in Machining of EN19 Steel Using Response Surface Methodology

Author(s):  
Santosh Nandurkar ◽  
Sachin Kulkarni ◽  
Tushar Hawal ◽  
Niranjan Pattar ◽  
Nagaraj Kelageri
2016 ◽  
Vol 40 (3) ◽  
pp. 331-349 ◽  
Author(s):  
S. Sivasankar ◽  
R. Jeyapaul

This research work concentrates on Electrical Discharge Machining (EDM) performance evaluation of ZrB2- SiC ceramic matrix composites with different tool materials at various machining parameters. Monolithic ZrB2 possesses lower relative density (98.72%) than composites. ZrB2 with 20 Vol.% of SiC possesses 99.74% of the relative density with improved hardness values. Bend strength and Young’s modulus increase with SiC addition until it reaches 20 Vol% and then decreasing. EDM performance on tool materials of tungsten, niobium, tantalum, graphite and titanium at various levels of pulse on time and pulse off time are analyzed. Graphite produces the best Material removal rate (MRR) for all the workpieces. Tool wear rate decreases with melting point and thermal conductivity of the tool material.


Author(s):  
Arun Kumar Rouniyar ◽  
Pragya Shandilya

Magnetic field assisted powder mixed electrical discharge machining is a hybrid machining process with suitable modification in electrical discharge machining combining the use of magnetic field and fine powder in the dielectric fluid. Aluminum 6061 alloy has found highly significance for the advanced industries like automotive, aerospace, electrical, marine, food processing and chemical due to good corrosion resistance, high strength-to-weight ratio, ease of weldability. In this present work, magnetic field assisted powder mixed electrical discharge machining setup was fabricated and experiments were performed using one factor at a time approach for aluminum 6061 alloy. The individual effect of machining parameters namely, peak current, pulse on time, pulse off time, powder concentration and magnetic field on material removal rate and tool wear rate was investigated. The effect of peak current was found to be dominant on material removal rate and tool wear rate followed by pulse on time, powder concentration and magnetic field. Increase in material removal rate and tool wear rate was observed with increase in peak current, pulse on time and a decrease in pulse off time, whereas, for material removal rate increases and tool wear rate decreases up to the certain value and follow the reverse trend with an increase in powder concentration. Material removal rate was increased and tool wear rate was decreased with increase in magnetic field.


2014 ◽  
Vol 941-944 ◽  
pp. 1973-1976
Author(s):  
B. Geetha ◽  
K. Ganesan

An investigation was carried out to find out the influence of process parameters on surface roughness (SR) and material removal rate (MRR) in electric discharge machine of Al-7%Si-4%Mg with 20% of red mud Metal Matrix Composites since electric discharge machining is a thermo-electric machining process, an electronic die sinking electric discharge machine was used to drill holes in the composite work piece, copper is used as tool material. Experiment was carried out to find surface roughness, material removal rate and tool wear rate by varying the peak current, flushing pressure of dielectric fluid and pulse on time. It was found that the surface roughness of composite metal increases with the increase peak current ,pulse on time and flushing pressure due larger and deeper craters on the drilled surface. It was also found that there was increase in metal removal rate with the increase in peak current and flushing pressure and slightly decreases with the increase in pulse on time due carbon deposits on the electrodes. Experimental analysis is carried using Taguchi’s Design of Experiment method with various parameters like peak current, flushing pressure of dielectric fluid and pulse on time to identify the key factors that influence the surface roughness, material removal rate and tool wear rate. It was found that the peak current was the most significant parameter that influences surface roughness, material removal rate and tool wear rate. The Taguchi experiments results confirm the actual results obtained from the numerical calculation.


Author(s):  
Munmun Bhaumik ◽  
Kali Pada Maity

Electro discharge machining (EDM) is most popular non-conventional electro-thermal machining process where electrical energy is used to generate a spark and thermal energy used to remove material from the workpiece. The primary goal of EDM is getting more material removal rate (MRR) with lower tool wear rate (TWR). For this investigation, machining parameters like peak current, pulse on time, gap voltage and duty cycle are considered as process parameter, and material removal rate (MRR) and tool wear rate (TWR) are considered as response. AISI 304 stainless steel and tungsten carbide are used as work material and tool material respectively. Taguchi L27 orthogonal array has been applied for designing the experiment. A hybrid optimization technique like desirability in combination with grey relational analysis (GRA) has been performed to get the optimum level of the control parameter for getting higher MRR and lower TWR. Analysis of variance (ANOVA) is performed for the statistical analysis. These results show that peak current is the most significant parameter for MRR and TWR. The optimal parameter setting for maximum MRR and minimum TWR has obtained by desirability coupled with Grey relational analysis.


Sign in / Sign up

Export Citation Format

Share Document