Long-Term Satellite Data Time Series Analysis for Land Degradation Mapping to Support Sustainable Land Management in Ukraine

2021 ◽  
pp. 165-189
Author(s):  
Mykhailo Popov ◽  
Sergey Stankevich ◽  
Anna Kozlova ◽  
Iryna Piestova ◽  
Mykola Lubskiy ◽  
...  
2021 ◽  
Vol 13 (7) ◽  
pp. 1297
Author(s):  
Esther Barvels ◽  
Rasmus Fensholt

In Ethiopia land degradation through soil erosion is of major concern. Land degradation mainly results from heavy rainfall events and droughts and is associated with a loss of vegetation and a reduction in soil fertility. To counteract land degradation in Ethiopia, initiatives such as the Sustainable Land Management Programme (SLMP) have been implemented. As vegetation condition is a key indicator of land degradation, this study used satellite remote sensing spatiotemporal trend analysis to examine patterns of vegetation between 2002 and 2018 in degraded land areas and studied the associated climate-related and human-induced factors, potentially through interventions of the SLMP. Due to the heterogeneity of the landscapes of the highlands of the Ethiopian Plateau and the small spatial scale at which human-induced changes take place, this study explored the value of using 30 m resolution Landsat data as the basis for time series analysis. The analysis combined Landsat derived Normalised Difference Vegetation Index (NDVI) data with Climate Hazards group Infrared Precipitation with Stations (CHIRPS) derived rainfall estimates and used Theil-Sen regression, Mann-Kendall trend test and LandTrendr to detect changes in NDVI, rainfall and rain-use efficiency. Ordinary Least Squares (OLS) regression analysis was used to relate changes in vegetation directly to SLMP infrastructure. The key findings of the study are a general trend shift from browning between 2002 and 2010 to greening between 2011 and 2018 along with an overall greening trend between 2002 and 2018. Significant improvements in vegetation condition due to human interventions were found only at a small scale, mainly on degraded hillside locations, along streams or in areas affected by gully erosion. Visual inspections (based on Google Earth) and OLS regression results provide evidence that these can partly be attributed to SLMP interventions. Even from the use of detailed Landsat time series analysis, this study underlines the challenge and limitations to remotely sensed detection of changes in vegetation condition caused by land management interventions aiming at countering land degradation.


Electronics ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 1151
Author(s):  
Carolina Gijón ◽  
Matías Toril ◽  
Salvador Luna-Ramírez ◽  
María Luisa Marí-Altozano ◽  
José María Ruiz-Avilés

Network dimensioning is a critical task in current mobile networks, as any failure in this process leads to degraded user experience or unnecessary upgrades of network resources. For this purpose, radio planning tools often predict monthly busy-hour data traffic to detect capacity bottlenecks in advance. Supervised Learning (SL) arises as a promising solution to improve predictions obtained with legacy approaches. Previous works have shown that deep learning outperforms classical time series analysis when predicting data traffic in cellular networks in the short term (seconds/minutes) and medium term (hours/days) from long historical data series. However, long-term forecasting (several months horizon) performed in radio planning tools relies on short and noisy time series, thus requiring a separate analysis. In this work, we present the first study comparing SL and time series analysis approaches to predict monthly busy-hour data traffic on a cell basis in a live LTE network. To this end, an extensive dataset is collected, comprising data traffic per cell for a whole country during 30 months. The considered methods include Random Forest, different Neural Networks, Support Vector Regression, Seasonal Auto Regressive Integrated Moving Average and Additive Holt–Winters. Results show that SL models outperform time series approaches, while reducing data storage capacity requirements. More importantly, unlike in short-term and medium-term traffic forecasting, non-deep SL approaches are competitive with deep learning while being more computationally efficient.


2014 ◽  
Vol 52 (5) ◽  
pp. 2960-2976 ◽  
Author(s):  
Wonkook Kim ◽  
Tao He ◽  
Dongdong Wang ◽  
Changyong Cao ◽  
Shunlin Liang

Gut ◽  
2020 ◽  
pp. gutjnl-2020-320666
Author(s):  
Qiang Feng ◽  
Xiang Lan ◽  
Xiaoli Ji ◽  
Meihui Li ◽  
Shili Liu ◽  
...  

2004 ◽  
Vol 380 (3) ◽  
pp. 493-501 ◽  
Author(s):  
Christian Temme ◽  
Ralf Ebinghaus ◽  
J�rgen W. Einax ◽  
Alexandra Steffen ◽  
William H. Schroeder

Sign in / Sign up

Export Citation Format

Share Document