habitat mapping
Recently Published Documents


TOTAL DOCUMENTS

374
(FIVE YEARS 101)

H-INDEX

40
(FIVE YEARS 6)

2022 ◽  
Vol 304 ◽  
pp. 114262
Author(s):  
Daniele Ventura ◽  
Gianluca Mancini ◽  
Edoardo Casoli ◽  
Daniela Silvia Pace ◽  
Giovanna Jona Lasinio ◽  
...  

2022 ◽  
Vol 14 (1) ◽  
pp. 219
Author(s):  
Dorothée James ◽  
Antoine Collin ◽  
Antoine Mury ◽  
Rongjun Qin

The evolution of the coastal fringe is closely linked to the impact of climate change, specifically increases in sea level and storm intensity. The anthropic pressure that is inflicted on these fragile environments strengthens the risk. Therefore, numerous research projects look into the possibility of monitoring and understanding the coastal environment in order to better identify its dynamics and adaptation to the major changes that are currently taking place in the landscape. This new study aims to improve the habitat mapping/classification at Very High Resolution (VHR) using Pleiades–1–derived topography, its morphometric by–products, and Pleiades–1–derived imageries. A tri–stereo dataset was acquired and processed by image pairing to obtain nine digital surface models (DSM) that were 0.50 m pixel size using the free software RSP (RPC Stereo Processor) and that were calibrated and validated with the 2018–LiDAR dataset that was available for the study area: the Emerald Coast in Brittany (France). Four morphometric predictors that were derived from the best of the nine generated DSMs were calculated via a freely available software (SAGA GIS): slope, aspect, topographic position index (TPI), and TPI–based landform classification (TPILC). A maximum likelihood classification of the area was calculated using nine classes: the salt marsh, dune, rock, urban, field, forest, beach, road, and seawater classes. With an RMSE of 4 m, the DSM#2–3_1 (from images #2 and #3 with one ground control point) outperformed the other DSMs. The classification results that were computed from the DSM#2–3_1 demonstrate the importance of the contribution of the morphometric predictors that were added to the reference Red–Green–Blue (RGB, 76.37% in overall accuracy, OA). The best combination of TPILC that was added to the RGB + DSM provided a gain of 13% in the OA, reaching 89.37%. These findings will help scientists and managers who are tasked with coastal risks at VHR.


2021 ◽  
Vol 14 (1) ◽  
pp. 133
Author(s):  
Alyson Le Quilleuc ◽  
Antoine Collin ◽  
Michael F. Jasinski ◽  
Rodolphe Devillers

Accurate and reliable bathymetric data are needed for a wide diversity of marine research and management applications. Satellite-derived bathymetry represents a time saving method to map large shallow waters of remote regions compared to the current costly in situ measurement techniques. This study aims to create very high-resolution (VHR) bathymetry and habitat mapping in Mayotte island waters (Indian Ocean) by fusing 0.5 m Pleiades-1 passive multispectral imagery and active ICESat-2 LiDAR bathymetry. ICESat-2 georeferenced photons were filtered to remove noise and corrected for water column refraction. The bathymetric point clouds were validated using the French naval hydrographic and oceanographic service Litto3D® dataset and then used to calibrate the multispectral image to produce a digital depth model (DDM). The latter enabled the creation of a digital albedo model used to classify benthic habitats. ICESat-2 provided bathymetry down to 15 m depth with a vertical accuracy of bathymetry estimates reaching 0.89 m. The benthic habitats map produced using the maximum likelihood supervised classification provided an overall accuracy of 96.62%. This study successfully produced a VHR DDM solely from satellite data. Digital models of higher accuracy were further discussed in the light of the recent and near-future launch of higher spectral and spatial resolution satellites.


2021 ◽  
Vol 136 ◽  
pp. 102568
Author(s):  
D. Mateos-Molina ◽  
S.J. Pittman ◽  
M. Antonopoulou ◽  
R. Baldwin ◽  
A. Chakraborty ◽  
...  

2021 ◽  
Vol 10 (2) ◽  
pp. 374-382
Author(s):  
Mohd Shukri Mohd Yusop ◽  
Mohd Norsyarizad Razali ◽  
Nazirah Md Tarmizi ◽  
Mohd Najib Abdul Ghani Yolhamid ◽  
M.N. Azzeri ◽  
...  

Marine ecosystems and natural habitat play the important role of the Earth’s life support system. They significantly contribute to economies and food safety and help preserve ecological processes. However, the devastation of the marine ecosystem in Malaysia due to the human factor and climate change is quite alarming. Therefore, spatial marine information, especially on the distribution of seabed substrates and habitat mapping, are of utmost importance for marine ecosystem management and conservation. Traditionally, seabed substrate and habitat mapping were classified based on direct observation techniques such as photography, video, sampling, coring and scuba diving. These techniques are often limited due to water clarity and weather conditions and only suitable for smaller scale surveys. In this study, we employed an acoustic approach using the RoxAnn Acoustic Ground Discrimination System (AGDS) with a high-frequency single-beam echo sounder to examine the distribution of seabed substrate at the Mandi Darah Island, Sabah. The acoustic signals recorded by AGDS are translated into hardness and roughness indices which are then used to identify the unique characteristics of the recorded seabed types. The analysis has shown that fifteen types of substrates, ranging from silt to rough/some seagrass, have been identified and classified. The findings demonstrated that the acoustic method was a better alternative for seabed substrate determination than the conventional direct observation techniques in terms of cost and time spent, especially in large scale surveys. The seabed substrate dataset from this study could be used as baseline information for the better management and conservation of the marine ecosystem.


2021 ◽  
Vol 22 (11) ◽  
Author(s):  
Anggita Kartikasari ◽  
TODHI PRISTIANTO ◽  
RIZKI HANINTYO ◽  
EGHBERT ELVAN AMPOU ◽  
TEJA ARIEF WIBAWA ◽  
...  

Abstract. Kartikasari A, Pristianto T, Hanintyo R, Ampou EE, Wibawa TA, Borneo BB. 2021. Representative benthic habitat mapping on Lovina coral reefs in Northern Bali, Indonesia. Biodiversitas 22: 4766-4774. Satellite optical imagery datasets integrated with in situ measurements are widely used to derive the spatial distribution of various benthic habitats in coral reef ecosystems. In this study, an approach to estimate spatial coverage of those habitats based on observation derived from Sentinel-2 optical imagery and a field survey, is presented. This study focused on the Lovina coral reef ecosystem of Northern Bali, Indonesia to support deployment of artificial reefs within the Indonesian Coral Reef Garden (ICRG) programme. Three specific locations were explored: Temukus, Tukad Mungga, and Baktiseraga waters. Spatial benthic habitat coverages of these three waters was estimated based on supervised classification techniques using 10m bands of Sentinel-2 imagery and the medium scale approach (MSA) transect method of in situ measurement.The study indicates that total coverage of benthic habitat is 61.34 ha, 25.17 ha, and 27.88 ha for Temukus, Tukad Mungga, and Baktiseraga waters, respectively. The dominant benthic habitat of those three waters consists of sand, seagrass, coral, rubble, reef slope and intertidal zone. The coral reef coverage is 29.48 ha (48%) for Temukus covered by genus Acropora, Isopora, Porites, Montipora, Pocillopora. The coverage for Tukad Mungga is 8.69 ha (35%) covered by genus Acropora, Montipora, Favia, Psammocora, Porites, and the coverage for Baktiseraga is 11.37 ha (41%) covered by genus Montipora sp, Goniastrea, Pavona, Platygyra, Pocillopora, Porites, Acropora, Leptoseris, Acropora, Pocillopora, Fungia. The results are expected to be suitable as supporting data in restoring coral reef ecosystems in the northern part of Bali, especially in Buleleng District.


2021 ◽  
Vol 9 ◽  
Author(s):  
Bruno Danis ◽  
Henrik Christiansen ◽  
Charlène Guillaumot ◽  
Franz Heindler ◽  
Quentin Jossart ◽  
...  

This dataset relates to the biodiversity census carried out during the Belgica 121 (B121) expedition to the Western Antarctic Peninsula from February to March 2019. One of the aims of the campaign was to explore the surroundings of the Gerlache Strait and to carry out a detailed biodiversity census focusing on inter- and subtidal shallow-water areas using both classic descriptive marine ecology methods, as well as state-of-the art techniques (habitat mapping, genetics, trophic ecology). The biodiversity census was carried out onboard a nimble research vessel, RV Australis. This dataset will offer access to the raw data on biodiversity occurrences, obtained using a range of methods described in this data paper. New raw biodiversity data for a poorly-sampled region (Western Antarctic Peninsula) with a special focus on shallow ecosystems.


Sign in / Sign up

Export Citation Format

Share Document