Generative Models and Unsupervised Learning

Author(s):  
Jong Chul Ye
2021 ◽  
Author(s):  
◽  
Mouna Hakami

<p><b>This thesis presents two studies on non-intrusive speech quality assessment methods. The first applies supervised learning methods to speech quality assessment, which is a common approach in machine learning based quality assessment. To outperform existing methods, we concentrate on enhancing the feature set. In the second study, we analyse quality assessment from a different point of view inspired by the biological brain and present the first unsupervised learning based non-intrusive quality assessment that removes the need for labelled training data.</b></p> <p>Supervised learning based, non-intrusive quality predictors generally involve the development of a regressor that maps signal features to a representation of perceived quality. The performance of the predictor largely depends on 1) how sensitive the features are to the different types of distortion, and 2) how well the model learns the relation between the features and the quality score. We improve the performance of the quality estimation by enhancing the feature set and using a contemporary machine learning model that fits this objective. We propose an augmented feature set that includes raw features that are presumably redundant. The speech quality assessment system benefits from this redundancy as it results in reducing the impact of unwanted noise in the input. Feature set augmentation generally leads to the inclusion of features that have non-smooth distributions. We introduce a new pre-processing method and re-distribute the features to facilitate the training. The evaluation of the system on the ITU-T Supplement23 database illustrates that the proposed system outperforms the popular standards and contemporary methods in the literature.</p> <p>The unsupervised learning quality assessment approach presented in this thesis is based on a model that is learnt from clean speech signals. Consequently, it does not need to learn the statistics of any corruption that exists in the degraded speech signals and is trained only with unlabelled clean speech samples. The quality has a new definition, which is based on the divergence between 1) the distribution of the spectrograms of test signals, and 2) the pre-existing model that represents the distribution of the spectrograms of good quality speech. The distribution of the spectrogram of the speech is complex, and hence comparing them is not trivial. To tackle this problem, we propose to map the spectrograms of speech signals to a simple latent space.</p> <p>Generative models that map simple latent distributions into complex distributions are excellent platforms for our work. Generative models that are trained on the spectrograms of clean speech signals learned to map the latent variable $Z$ from a simple distribution $P_Z$ into a spectrogram $X$ from the distribution of good quality speech.</p> <p>Consequently, an inference model is developed by inverting the pre-trained generator, which maps spectrograms of the signal under the test, $X_t$, into its relevant latent variable, $Z_t$, in the latent space. We postulate the divergence between the distribution of the latent variable and the prior distribution $P_Z$ is a good measure of the quality of speech.</p> <p>Generative adversarial nets (GAN) are an effective training method and work well in this application. The proposed system is a novel application for a GAN. The experimental results with the TIMIT and NOIZEUS databases show that the proposed measure correlates positively with the objective quality scores.</p>


2021 ◽  
Author(s):  
◽  
Mouna Hakami

<p><b>This thesis presents two studies on non-intrusive speech quality assessment methods. The first applies supervised learning methods to speech quality assessment, which is a common approach in machine learning based quality assessment. To outperform existing methods, we concentrate on enhancing the feature set. In the second study, we analyse quality assessment from a different point of view inspired by the biological brain and present the first unsupervised learning based non-intrusive quality assessment that removes the need for labelled training data.</b></p> <p>Supervised learning based, non-intrusive quality predictors generally involve the development of a regressor that maps signal features to a representation of perceived quality. The performance of the predictor largely depends on 1) how sensitive the features are to the different types of distortion, and 2) how well the model learns the relation between the features and the quality score. We improve the performance of the quality estimation by enhancing the feature set and using a contemporary machine learning model that fits this objective. We propose an augmented feature set that includes raw features that are presumably redundant. The speech quality assessment system benefits from this redundancy as it results in reducing the impact of unwanted noise in the input. Feature set augmentation generally leads to the inclusion of features that have non-smooth distributions. We introduce a new pre-processing method and re-distribute the features to facilitate the training. The evaluation of the system on the ITU-T Supplement23 database illustrates that the proposed system outperforms the popular standards and contemporary methods in the literature.</p> <p>The unsupervised learning quality assessment approach presented in this thesis is based on a model that is learnt from clean speech signals. Consequently, it does not need to learn the statistics of any corruption that exists in the degraded speech signals and is trained only with unlabelled clean speech samples. The quality has a new definition, which is based on the divergence between 1) the distribution of the spectrograms of test signals, and 2) the pre-existing model that represents the distribution of the spectrograms of good quality speech. The distribution of the spectrogram of the speech is complex, and hence comparing them is not trivial. To tackle this problem, we propose to map the spectrograms of speech signals to a simple latent space.</p> <p>Generative models that map simple latent distributions into complex distributions are excellent platforms for our work. Generative models that are trained on the spectrograms of clean speech signals learned to map the latent variable $Z$ from a simple distribution $P_Z$ into a spectrogram $X$ from the distribution of good quality speech.</p> <p>Consequently, an inference model is developed by inverting the pre-trained generator, which maps spectrograms of the signal under the test, $X_t$, into its relevant latent variable, $Z_t$, in the latent space. We postulate the divergence between the distribution of the latent variable and the prior distribution $P_Z$ is a good measure of the quality of speech.</p> <p>Generative adversarial nets (GAN) are an effective training method and work well in this application. The proposed system is a novel application for a GAN. The experimental results with the TIMIT and NOIZEUS databases show that the proposed measure correlates positively with the objective quality scores.</p>


2016 ◽  
Vol 5 (2) ◽  
pp. 123-130
Author(s):  
Mani Manavalan ◽  
Praveen Kumar Donepudi

Many unsupervised learning processes have the purpose of aligning two probability distributions. Recoding models like ICA and projection pursuit, as well as generative models like Gaussian mixtures and Boltzmann machines, can be seen in this perspective. For these types of models, we offer a new sample-based error measure that can be used even when maximum likelihood (ML) and probability density estimation-based formulations can't be used, such as when the posteriors are nonlinear or intractable. Furthermore, the challenges of approximating a density function are avoided by our sample-based error measure. We show that with an unconstrained model, (1) our technique converges on the correct solution as the number of samples increases to infinity, and (2) our approach's predicted answer in the generative framework is the ML solution. Finally, simulations of linear and nonlinear models on mixtures of Gaussians and ICA issues are used to evaluate our approach. Our method's applicability and generality are demonstrated by the experiments.  


Author(s):  
Hyeuk Kim

Unsupervised learning in machine learning divides data into several groups. The observations in the same group have similar characteristics and the observations in the different groups have the different characteristics. In the paper, we classify data by partitioning around medoids which have some advantages over the k-means clustering. We apply it to baseball players in Korea Baseball League. We also apply the principal component analysis to data and draw the graph using two components for axis. We interpret the meaning of the clustering graphically through the procedure. The combination of the partitioning around medoids and the principal component analysis can be used to any other data and the approach makes us to figure out the characteristics easily.


Sign in / Sign up

Export Citation Format

Share Document