Stress Analysis Using Complex Variable-Based Analytical-FEM Hybrid Approach

Author(s):  
Yogesh S. Thube ◽  
S. K. Lohit ◽  
Tejas P. Gotkhindi
2019 ◽  
Vol 1411 ◽  
pp. 012020
Author(s):  
Purong Jia ◽  
Gang Wang ◽  
Long Zhang ◽  
Cheng Jia ◽  
Yongyong Suo

Author(s):  
Abdullah Alshaya ◽  
Shiang-Jiun Lin

The ability to stress-analyze complicated structures from recorded load-induced temperatures is demonstrated. The considered structures have a near-surface hole and subjected to a concentrated load. The complexity of the structure is simplified by conformal mapping, the traction-free condition on the boundary of the hole is analytically satisfied by analytic continuation, and the equilibrium and compatibility conditions are satisfied by means of Airy stress function in complex-variable formulation. For isotropic member that is cyclically loaded within its elastic range, the produced in-phase temperature variations are linearly proportional to the local changes in the normal stresses. Even though no recorded thermal data were used at or near to the edges, the present hybrid method simultaneously separates the load-induced temperatures into the individual stress components, determines reliably the boundary stress and hence the stress concentration, and smooths the measured input data. Unlike prior capabilities of using geometrical symmetry to simply the stress function representation, the present analysis retains all the terms in the stress functions. Therefore, the considered hybrid stress analysis approach of such complex structures extends significantly the applicability of thermoelastic stress analysis compared to prior capabilities and is considered to be the most complicated formulation of the hybrid complex-variable method to date. To support the reliability of the present hybrid method, the results were compared with finite element predictions and previous results based on Mitchell solution.


VASA ◽  
2016 ◽  
Vol 45 (5) ◽  
pp. 417-422 ◽  
Author(s):  
Anouk Grandjean ◽  
Katia Iglesias ◽  
Céline Dubuis ◽  
Sébastien Déglise ◽  
Jean-Marc Corpataux ◽  
...  

Abstract. Background: Multilevel peripheral arterial disease is frequently observed in patients with intermittent claudication or critical limb ischemia. This report evaluates the efficacy of one-stage hybrid revascularization in patients with multilevel arterial peripheral disease. Patients and methods: A retrospective analysis of a prospective database included all consecutive patients treated by a hybrid approach for a multilevel arterial peripheral disease. The primary outcome was the patency rate at 6 months and 1 year. Secondary outcomes were early and midterm complication rate, limb salvage and mortality rate. Statistical analysis, including a Kaplan-Meier estimate and univariate and multivariate Cox regression analyses were carried out with the primary, primary assisted and secondary patency, comparing the impact of various risk factors in pre- and post-operative treatments. Results: 64 patients were included in the study, with a mean follow-up time of 428 days (range: 4 − 1140). The technical success rate was 100 %. The primary, primary assisted and secondary patency rates at 1 year were 39 %, 66 % and 81 %, respectively. The limb-salvage rate was 94 %. The early mortality rate was 3.1 %. Early and midterm complication rates were 15.4 % and 6.4 %, respectively. The early mortality rate was 3.1 %. Conclusions: The hybrid approach is a major alternative in the treatment of peripheral arterial disease in multilevel disease and comorbid patients, with low complication and mortality rates and a high limb-salvage rate.


1984 ◽  
Vol 45 (C1) ◽  
pp. C1-901-C1-904 ◽  
Author(s):  
C. Marinucci ◽  
L. Palladino ◽  
G. Pasotti ◽  
M. V. Ricci ◽  
G. Vécsey

Sign in / Sign up

Export Citation Format

Share Document