Autonomous Navigation of Drones Using Reinforcement Learning

Author(s):  
Billy Jacob ◽  
Abhishek Kaushik ◽  
Pankaj Velavan
Sensors ◽  
2021 ◽  
Vol 21 (7) ◽  
pp. 2534
Author(s):  
Oualid Doukhi ◽  
Deok-Jin Lee

Autonomous navigation and collision avoidance missions represent a significant challenge for robotics systems as they generally operate in dynamic environments that require a high level of autonomy and flexible decision-making capabilities. This challenge becomes more applicable in micro aerial vehicles (MAVs) due to their limited size and computational power. This paper presents a novel approach for enabling a micro aerial vehicle system equipped with a laser range finder to autonomously navigate among obstacles and achieve a user-specified goal location in a GPS-denied environment, without the need for mapping or path planning. The proposed system uses an actor–critic-based reinforcement learning technique to train the aerial robot in a Gazebo simulator to perform a point-goal navigation task by directly mapping the noisy MAV’s state and laser scan measurements to continuous motion control. The obtained policy can perform collision-free flight in the real world while being trained entirely on a 3D simulator. Intensive simulations and real-time experiments were conducted and compared with a nonlinear model predictive control technique to show the generalization capabilities to new unseen environments, and robustness against localization noise. The obtained results demonstrate our system’s effectiveness in flying safely and reaching the desired points by planning smooth forward linear velocity and heading rates.


2020 ◽  
pp. 1134-1139
Author(s):  
Van Nguyen Thi Thanh ◽  
Tien Ngo Manh ◽  
Cuong Nguyen Manh ◽  
Dung Pham Tien ◽  
Manh Tran Van ◽  
...  

Nature ◽  
2020 ◽  
Vol 588 (7836) ◽  
pp. 77-82
Author(s):  
Marc G. Bellemare ◽  
Salvatore Candido ◽  
Pablo Samuel Castro ◽  
Jun Gong ◽  
Marlos C. Machado ◽  
...  

2020 ◽  
Vol 39 (7) ◽  
pp. 856-892 ◽  
Author(s):  
Tingxiang Fan ◽  
Pinxin Long ◽  
Wenxi Liu ◽  
Jia Pan

Developing a safe and efficient collision-avoidance policy for multiple robots is challenging in the decentralized scenarios where each robot generates its paths with limited observation of other robots’ states and intentions. Prior distributed multi-robot collision-avoidance systems often require frequent inter-robot communication or agent-level features to plan a local collision-free action, which is not robust and computationally prohibitive. In addition, the performance of these methods is not comparable with their centralized counterparts in practice. In this article, we present a decentralized sensor-level collision-avoidance policy for multi-robot systems, which shows promising results in practical applications. In particular, our policy directly maps raw sensor measurements to an agent’s steering commands in terms of the movement velocity. As a first step toward reducing the performance gap between decentralized and centralized methods, we present a multi-scenario multi-stage training framework to learn an optimal policy. The policy is trained over a large number of robots in rich, complex environments simultaneously using a policy-gradient-based reinforcement-learning algorithm. The learning algorithm is also integrated into a hybrid control framework to further improve the policy’s robustness and effectiveness. We validate the learned sensor-level collision-3avoidance policy in a variety of simulated and real-world scenarios with thorough performance evaluations for large-scale multi-robot systems. The generalization of the learned policy is verified in a set of unseen scenarios including the navigation of a group of heterogeneous robots and a large-scale scenario with 100 robots. Although the policy is trained using simulation data only, we have successfully deployed it on physical robots with shapes and dynamics characteristics that are different from the simulated agents, in order to demonstrate the controller’s robustness against the simulation-to-real modeling error. Finally, we show that the collision-avoidance policy learned from multi-robot navigation tasks provides an excellent solution for safe and effective autonomous navigation for a single robot working in a dense real human crowd. Our learned policy enables a robot to make effective progress in a crowd without getting stuck. More importantly, the policy has been successfully deployed on different types of physical robot platforms without tedious parameter tuning. Videos are available at https://sites.google.com/view/hybridmrca .


2021 ◽  
Vol 2138 (1) ◽  
pp. 012011
Author(s):  
Yanwei Zhao ◽  
Yinong Zhang ◽  
Shuying Wang

Abstract Path planning refers to that the mobile robot can obtain the surrounding environment information and its own state information through the sensor carried by itself, which can avoid obstacles and move towards the target point. Deep reinforcement learning consists of two parts: reinforcement learning and deep learning, mainly used to deal with perception and decision-making problems, has become an important research branch in the field of artificial intelligence. This paper first introduces the basic knowledge of deep learning and reinforcement learning. Then, the research status of deep reinforcement learning algorithm based on value function and strategy gradient in path planning is described, and the application research of deep reinforcement learning in computer game, video game and autonomous navigation is described. Finally, I made a brief summary and outlook on the algorithms and applications of deep reinforcement learning.


Sign in / Sign up

Export Citation Format

Share Document