Metal Nanocomposites—Emerging Advanced Materials for Efficient Carbon Capture

Author(s):  
Uttama Mukherjee
Nanomaterials ◽  
2019 ◽  
Vol 9 (6) ◽  
pp. 878 ◽  
Author(s):  
Íris Carneiro ◽  
Filomena Viana ◽  
Manuel F. Vieira ◽  
José V. Fernandes ◽  
Sónia Simões

The development of metal nanocomposites reinforced by carbon nanotubes (CNTs) remains a focus of the scientific community due to the growing need to produce lightweight advanced materials with unique mechanical properties. However, for the successful production of these nanocomposites, there is a need to consolidate knowledge about how reinforcement influences the matrix microstructure and which are the strengthening mechanisms promoting the best properties. In this context, this investigation focuses on the study of the reinforcement effect on the microstructure of an Ni-CNT nanocomposites produced by powder metallurgy. The microstructural evolution was analysed by electron backscattered diffraction (EBSD). The EBSD results revealed that the dispersion/mixing and pressing processes induce plastic deformation in the as-received powders. The dislocation structures produced in those initial steps are partially eliminated in the sintering process due to the activation of recovery and recrystallization mechanisms. However, the presence of CNTs in the matrix has a significant effect on the dislocation annihilation, thus reducing the recovery of the dislocation structures.


Author(s):  
M. Sarikaya ◽  
J. T. Staley ◽  
I. A. Aksay

Biomimetics is an area of research in which the analysis of structures and functions of natural materials provide a source of inspiration for design and processing concepts for novel synthetic materials. Through biomimetics, it may be possible to establish structural control on a continuous length scale, resulting in superior structures able to withstand the requirements placed upon advanced materials. It is well recognized that biological systems efficiently produce complex and hierarchical structures on the molecular, micrometer, and macro scales with unique properties, and with greater structural control than is possible with synthetic materials. The dynamism of these systems allows the collection and transport of constituents; the nucleation, configuration, and growth of new structures by self-assembly; and the repair and replacement of old and damaged components. These materials include all-organic components such as spider webs and insect cuticles (Fig. 1); inorganic-organic composites, such as seashells (Fig. 2) and bones; all-ceramic composites, such as sea urchin teeth, spines, and other skeletal units (Fig. 3); and inorganic ultrafine magnetic and semiconducting particles produced by bacteria and algae, respectively (Fig. 4).


Sign in / Sign up

Export Citation Format

Share Document