matrix microstructure
Recently Published Documents


TOTAL DOCUMENTS

164
(FIVE YEARS 33)

H-INDEX

19
(FIVE YEARS 4)

Materials ◽  
2022 ◽  
Vol 15 (1) ◽  
pp. 393
Author(s):  
Karsten Glowka ◽  
Maciej Zubko ◽  
Paweł Świec ◽  
Krystian Prusik ◽  
Magdalena Szklarska ◽  
...  

The presented work was focused on investigating the influence of the (hafnium and zirconium)/molybdenum ratio on the microstructure and properties of Ti20Ta20Nb20(ZrHf)20−xMox (where: x = 0, 5, 10, 15, 20 at.%) high entropy alloys in an as-cast state. The designed chemical composition was chosen due to possible future biomedical applications. Materials were obtained from elemental powders by vacuum arc melting technique. Phase analysis revealed the presence of dual body-centered cubic phases. X-ray diffraction showed the decrease of lattice parameters of both phases with increasing molybdenum concentration up to 10% of molybdenum and further increase of lattice parameters. The presence of two-phase matrix microstructure and hafnium and zirconium precipitates was proved by scanning and transmission electron microscopy observation. Mechanical property measurements revealed decreased micro- and nanohardness and reduced Young’s modulus up to 10% of Mo content, and further increased up to 20% of molybdenum addition. Additionally, corrosion resistance measurements in Ringers’ solution confirmed the high biomedical ability of studied alloys due to the presence of stable oxide layers.


2021 ◽  
Vol 2101 (1) ◽  
pp. 012085
Author(s):  
Dan Wu ◽  
Qiang Hu ◽  
Wei Chen ◽  
Deping Lu ◽  
Jin Zou ◽  
...  

Abstract Electroslag remelting P20 die steels with different amount of CeO2 or Y2O3 additions have been investigated by using mechanical tests and scanning electronic microscope with energy dispersive spectrometry. The microstructure of P20 die steels is tempered martensite, in which plenty of carbides precipitate along the martensite laths. With addition of rare earth Ce or Y, the matrix microstructure is refined, the quantity of carbides is decreased, and the distribution of carbides becomes more uniform. As a result of these microstructural changes, both the impact energy and tensile strength increase with increasing rare earth content. The samples obtain optimum microstructure and mechanical properties when the amount of CeO2 or Y2O3 additions reach 4 wt.%. However, over-added CeO2 or Y2O3 (>4 wt.%) results in the increase of carbides quantity and the aggregation of carbides, which reduces the impact energy and tensile strength of the samples. Present study indicates that the optimum addition of CeO2 and Y2O3 for the P20 die steels is 4 wt.%.


2021 ◽  
pp. 1-25
Author(s):  
Guanzhen Zhang ◽  
Chunpeng Liu ◽  
Si Wu ◽  
Sa Zhao ◽  
Bin Zhang

Abstract This work investigates the effect of abnormal microstructure on rolling contact fatigue (RCF) damage of high-speed railway wheels under service and the formation mechanism of abnormal microstructure by optical microscopy, scanning electron microscopy, transmission electron microscopy, nano indentation and laser-induced break down spectroscopy. Results show that there are large amounts of upper bainite in the wheel tread, which destroyed the uniformity of the microstructures of the wheel matrix. The bainite is composed of ferrite with high density of dislocations and short bar-shaped cementite. The bainite exhibited higher hardness and elasticity but lower plasticity than the matrix microstructure. The incongruity of plastic deformation between upper bainite and matrix microstructures will lead to stress concentration at boundary of the microstructures, thus accelerating the RCF crack initiation and propagation. The formation of upper bainite is caused by carbon segregation. Segregation of carbon element will make the continuous cooling transformation (CCT) curve shift to the right significantly, thus increasing the probability of bainite transformation in segregation zone at higher cooling rate. Therefore, large amounts of upper bainite were formed at wheel tread.


2021 ◽  
Author(s):  
Samuel Campbell ◽  
Rebecca Zitnay ◽  
Michelle Mendoza ◽  
Tamara C Bidone

AbstractThe external environment is a regulator of cell activity. Its stiffness and microstructure can either facilitate or prevent 3D cell migration in both physiology and disease. 3D cell migration results from force feedbacks between the cell and the extracellular matrix (ECM). Adhesions regulate these force feedbacks by working as molecular clutches that dynamically bind and unbind the ECM. Because of the interdependency between ECM properties, adhesion dynamics, and cell contractility, how exactly 3D cell migration occurs in different environments is not fully understood. In order to elucidate the effect of ECM on 3D cell migration through force-sensitive molecular clutches, we developed a computational model based on a lattice point approach. Results from the model show that increases in ECM pore size reduce cell migration speed. In contrast, matrix porosity increases it, given a sufficient number of ligands for cell adhesions and limited crowding of the matrix from cell replication. Importantly, these effects are maintained across a range of ECM stiffnesses’, demonstrating that mechanical factors are not responsible for how matrix microstructure regulates cell motility.


Materials ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5383
Author(s):  
Zhanyi Xu ◽  
Yuhui Sha ◽  
Zhenghua He ◽  
Fang Zhang ◽  
Wei Liu ◽  
...  

Matrix microstructure and texture controlling is an important way to optimize Goss ({110}<001>) abnormal grain growth (AGG) in high magnetic induction grain-oriented silicon (Hi-B) steel during primary recrystallization. In the present work, a matrix with homogeneous grain size and favorable texture components was obtained through two-stage normalized annealing followed by primary recrystallization. Furthermore, secondary recrystallization was performed for sharp Goss orientation by slow heating and purified annealing. It was found that plenty of island grains, which occurred and disappeared gradually, accompanied the process of AGG. Through analyzing the evolution of microstructure and texture, we realized that the formation of island grains was related to the large-size grains in matrix, and the elimination of that was attributed to the special grain boundaries which satisfied both coincident site lattice (CSL) and high-energy (HE) models. It was essential to control grain size and favorable orientations in matrix comprehensively for the high-efficient abnormal growing of sharp Goss orientation, through which excellent magnetic properties could be obtained simultaneously.


Author(s):  
S. Pinate ◽  
F. Eriksson ◽  
P. Leisner ◽  
C. Zanella

AbstractThis study analysed the influence of the codeposition of SiC particles with different sizes: 50 nm, 500 nm and 5 μm, and the type of bath agitation (stirring or ultrasonic) on the electrocrystallisation of nickel coatings. The composites matrix microstructure was analysed by means of SEM, EBSD and XRD, to evaluate the grain size, crystal orientation, and internal stresses and was benchmarked against pure nickel samples electrodeposited in equivalent conditions. The codeposition of nano- and microsize particles with an approximate content of 0.8 and 4 vol.%, respectively, caused only a minor grain refinement and did not vary the dominant < 100 > crystal orientation observed in pure Ni. The internal stress was, however, increased by particles codeposition, up to 104 MPa by nanoparticles and 57 MPa by microparticles, compared to the values observed in pure nickel (41 MPa). The higher codeposition rate (11 vol.%) obtained by the addition of submicron-size particles caused a change in the grain growth from columnar to equiaxial, resulting in deposits with a fully random crystal orientation and pronounced grain refinement. The internal stress was also increased by 800% compared to pure nickel. The ultrasound (US) agitation during the deposition caused grain refinement and a selective particle inclusion prompting a decrease in the content of the particles with the larger particles. The deposits produced under US agitation showed an increase in the internal stresses, with double values compared to stirring. The increase in the deposits microhardness, from 280 HV in pure Ni to 560 HV in Ni/SiC submicron-US, was linked to the microstructural changes and particles content. Graphical abstract


Author(s):  
Chaokun Song ◽  
Yongsheng Liu ◽  
Fang Ye ◽  
Laifei Cheng ◽  
Pengfei Zhang ◽  
...  

AbstractThe SiBCN matrix via chemical vapor infiltration (CVI) or/and polymer infiltration pyrolysis (PIP) technologies was orderly introduced to SiCf/SiC composites to optimize the mechanical property and electromagnetic (EM) shielding effectiveness simultaneously. The BN interface with the thickness of 350 nm was designed to obtain a little stronger interface bonding. The flexural strength of SiCf/SiC-SiBCN composites reached 545.45±29.59 MPa thanks to the crack deflection between the CVI SiC and CVI SiBCN, as well as CVI SiBCN and PIP SiBCN matrix because of the modulus difference between them. The fracture toughness (KIC) with the value of 16.02±0.94 MPa·m1/2 was obtained owing to the extension of crack propagation path. The adverse effect of stronger interface bonding was eliminated by the design of matrix microstructure for SiCf/SiC-SiBCN composites. The thermal conductivity in the thickness direction was 7.64 W·(m·K)−1 at 1200 °C and the electric resistivity decreased to 1.53×103 Ω·m. The tunable dielectric property was obtained with the coordination of wave-absorption CVI SiBCN matrix and impedance matching PIP SiBCN matrix, and the total shielding effectiveness (SET) attained 30.01 dB. It indicates that the SiCf/SiC-SiBCN composites have great potential to be applied as structural and functional materials.


Wear ◽  
2021 ◽  
Vol 472-473 ◽  
pp. 203608
Author(s):  
Yanliang Yi ◽  
Qiang Li ◽  
Shaolei Long ◽  
Zhen Lv ◽  
Shuangjian Li ◽  
...  

2021 ◽  
pp. 2100221
Author(s):  
Jun‐Cheng Zhang ◽  
Nan Gao ◽  
Lei Li ◽  
Shanshan Wang ◽  
Xiaofeng Shi ◽  
...  

Author(s):  
K.C. Anantha Padmanbham ◽  
Mruthenjaya. M ◽  
Darshan B.G

Aluminum is prospectively a significant material for tribological appliances for the reason that of its less density and superior thermal conductivity. However, aluminium by itself displays deprived tribological properties. Hence, the investigation of the tribological performance of aluminium based composite materials is flattering increasingly significant. Hence in the present research tribological behavior of Al-4.5%wt copper reinforced with varying percentage of zircon sand (2% -8% in increments of 2 %) with and without 2%wt graphite of hybrid composite samples prepared by friction stir casting technique.. To know the allocation of particles and bonding flanked by reinforcement with matrix, microstructure of the composites and base alloy were premeditated by means of “Optical and Scanning Electron Microscopy”. The wear loss was computed employing pin on disc apparatus at room temp underneath dry sliding state. The investigation reveals that the wear rate of Al-4.5%wtCu alloy effected by composition, load and speed..


Sign in / Sign up

Export Citation Format

Share Document