An Optimal Equilibrium Solution Approach for Bi-level Nonlinear Programming Problem Using Lingo Software

Author(s):  
Qian Wang ◽  
Mingfa Zheng ◽  
Bingjie Li
Mathematics ◽  
2020 ◽  
Vol 8 (7) ◽  
pp. 1130 ◽  
Author(s):  
Alexander Pankratov ◽  
Tatiana Romanova ◽  
Igor Litvinchev

Packing irregular 3D objects in a cuboid of minimum volume is considered. Each object is composed of a number of convex shapes, such as oblique and right circular cylinders, cones and truncated cones. New analytical tools are introduced to state placement constraints for oblique shapes. Using the phi-function technique, optimized packing is reduced to a nonlinear programming problem. Novel solution approach is provided and illustrated by numerical examples.


Mathematics ◽  
2021 ◽  
Vol 9 (13) ◽  
pp. 1551
Author(s):  
Bothina El-Sobky ◽  
Yousria Abo-Elnaga ◽  
Abd Allah A. Mousa ◽  
Mohamed A. El-Shorbagy

In this paper, a penalty method is used together with a barrier method to transform a constrained nonlinear programming problem into an unconstrained nonlinear programming problem. In the proposed approach, Newton’s method is applied to the barrier Karush–Kuhn–Tucker conditions. To ensure global convergence from any starting point, a trust-region globalization strategy is used. A global convergence theory of the penalty–barrier trust-region (PBTR) algorithm is studied under four standard assumptions. The PBTR has new features; it is simpler, has rapid convergerce, and is easy to implement. Numerical simulation was performed on some benchmark problems. The proposed algorithm was implemented to find the optimal design of a canal section for minimum water loss for a triangle cross-section application. The results are promising when compared with well-known algorithms.


Author(s):  
Tarunraj Singh

The focus of this paper is on the design of robust input shapers where the maximum value of the cost function over the domain of uncertainty is minimized. This nonlinear programming problem is reformulated as a linear programming problem by approximating a n-dimensional hypersphere with multiple hyperplanes (as in a geodesic dome). A recursive technique to approximate a hypersphere to any level of accuracy is developed using barycentric coordinates. The proposed technique is illustrated on the spring-mass-dashpot and the benchmark floating oscillator problem undergoing a rest-to-rest maneuver. It is shown that the results of the linear programming problem are nearly identical to that of the nonlinear programming problem.


Robotica ◽  
1994 ◽  
Vol 12 (5) ◽  
pp. 401-410 ◽  
Author(s):  
Chia-Ju Wu

SUMMARYIn this paper, a numerical approach is proposed to solve the time-optimal path-planning (TOPP) problem of kinematically redundant manipulators between two end-points. The first step is to transform the TOPP problem into a nonlinear programming problem by an iterative procedure. Then an approach to find the initial feasible solutions of the problem is proposed. Since initial feasible solutions can be found easily, the optimization process of the nonlinear programming problem can be started from different points to find the global minimum. A planar three-link robotic manipulator is used to illustrate the validity of the proposed approach.


Sign in / Sign up

Export Citation Format

Share Document