integer nonlinear programming
Recently Published Documents


TOTAL DOCUMENTS

284
(FIVE YEARS 69)

H-INDEX

31
(FIVE YEARS 4)

OR Spectrum ◽  
2021 ◽  
Author(s):  
Ralf Lenz ◽  
Kai Helge Becker

AbstractIn commodity transport networks such as natural gas, hydrogen and water networks, flows arise from nonlinear potential differences between the nodes, which can be represented by so-called potential-driven network models. When operators of these networks face increasing demand or the need to handle more diverse transport situations, they regularly seek to expand the capacity of their network by building new pipelines parallel to existing ones (“looping”). The paper introduces a new mixed-integer nonlinear programming model and a new nonlinear programming model and compares these with existing models for the looping problem and related problems in the literature, both theoretically and experimentally. On this basis, we give recommendations to practitioners about the circumstances under which a certain model should be used. In particular, it turns out that one of our novel models outperforms the existing models with respect to computational time, the number of solutions found, the number of instances solved and cost savings. Moreover, the paper extends the models for optimizing over multiple demand scenarios and is the first to include the practically relevant option that a particular pipeline may be looped several times.


2021 ◽  
Vol 11 (18) ◽  
pp. 8375
Author(s):  
Min Yuan ◽  
Yu Li ◽  
Wenqiang Xu ◽  
Wei Cui

Based on actual lubricating oil production data and the base oil performance indexes of an enterprise, two nonlinear blending schemes corresponding to viscosity and freezing point and four linear blending schemes corresponding to acid value, flash point, oxidation stability, and carbon residue are given in this paper. On the premise that the error of each index is less than 5%, a linear weighted multi-objective optimization model based on integer nonlinear programming considering cost and performance is established, and the lubricating oil blending scheme is obtained. The results show that the blending formula is simple in form and convenient in calculation, and that the overall consistency between the calculated value and the measured value is good. At the same time, the relative error of each performance index, except residual carbon, of the scheme with weight value of (0.5, 0.5) is far less than 5%. Although the performance index is slightly inferior to that of the scheme with a weight value of (0, 1), it is far higher than that of the scheme with a weight value of (1, 0). The linear weighted multi-objective optimization model based on integer nonlinear programming proposed in this paper can well-optimize the blending scheme of industrial lubricating oil, and can re-select different weight combinations according to the actual situation, providing good prospects for application.


Author(s):  
Wanning Liu ◽  
Yitao Xu ◽  
Ducheng Wu ◽  
Haichao Wang ◽  
Xueqiang Zheng ◽  
...  

AbstractThis paper mainly investigates the energy-efficient and secure offloading problem in air-to-ground Mobile Edge Computing (MEC) networks. The proposed efficient offloading mechanism is as per the requirements of the heterogeneous tasks of ground users. Further, the optimizing offloading rate, offloading object, and channel access jointly formulate system energy consumption and eavesdropping rate minimization. A distributed two-stage offloading scheme is proposed for achieving the sub-optimal solution for the Mixed-integer Nonlinear Programming (MINLP) problem. Finally, simulation results demonstrate that the proposed scheme is superior to several benchmark schemes.


2021 ◽  
Vol 7 (2) ◽  
pp. 8-17
Author(s):  
V. Bugrov

The possibility of quantizing the coefficients of a digital filter in the concept of dynamic mathematical programming, as a dynamic process of step-by-step quantization of coefficients with their discrete optimization at each step according to the objective function, common to the entire quantization process, is considered. Dynamic quantization can significantly reduce the functional error when implementing the required characteristics of a lowbit digital filter in comparison with classical quantization. An algorithm is presented for step-by-step dynamic quantization using integer nonlinear programming methods, taking into account the specified signal scaling and the radius of the poles of the filter transfer function. The effectiveness of this approach is illustrated by dynamically quantizing the coefficients of a cascaded high-order IIR bandpass filter with a minimum bit depth to represent integer coefficients. A comparative analysis of functional quantization errors is carried out, as well as a test of the quantized filter performance on test and real signals.


Processes ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 949
Author(s):  
Cristhian R. Rosero ◽  
P. Sebastián Espinel ◽  
Pablo V. Tuza

In the present work, various objective functions were formulated and optimized using the mixed integer nonlinear programming and the generalized reduced gradient nonlinear method from the solver tool of Microsoft® Excel 2016, respectively. The CH3FO2, C2H4F2O, CH2F2O2, CH2F2O, C3H4F2, and the C2H2F2O molecules were found to meet structural feasibility constraints and physical properties from refrigerant molecules and have not previously been reported in the literature. These new refrigerants present global warming potential values similar to that from the R-134a and Freon 12 refrigerants and null ozone depletion potential. Moreover, these molecules are normally flammable, as similar as to R-134a refrigerant. The CH3FO2, C2H4F2O, CH2F2O2, C2H2F2O, and CH2F2O show toxicity values similar to R-134a and Freon 12 refrigerants.


Sign in / Sign up

Export Citation Format

Share Document