Load Settlement Behaviour of Soft Soil with 3D-Reinforced Sand Piles

Author(s):  
O. Megha ◽  
M. N. Sandeep ◽  
K. S. Beena
2022 ◽  
Vol 906 ◽  
pp. 39-45
Author(s):  
Tatiana Maltseva

One of the ways to increase the bearing capacity and stability of a water-saturated base by introducing a sand pile vertically reinforced along the contour with geosynthetic material (geogrid SSP 30 / 30-2.5) is experimentally substantiated. This constructive solution is used in low-rise construction. For the theoretical substantiation of the suggested method, it is proposed to model the interaction of a weak foundation and a reinforced sand pile on the basis of the linear theory of viscoelasticity. Calculation of vertical displacements of the pile and comparison with the results of in situ experiments is presented.


2022 ◽  
Vol 07 (01) ◽  
Author(s):  
Serpil Erden ◽  

In this study, the performances of the sand piles in Istanbul's Bağcılar and Zeytinburnu districts has been analyzed using Finite Element Method (FEM). Single and group (triple) piles with various length/diameter ratios (L/D) were placed in the water-saturated soft clay soil. Sand piles were modeled in various L/D ratios (10, 5.71, and 8.57). The distance between the piles was chosen as 2 meters and the group effect was also investigated. A uniformly distributed load of 162 kN/m2 is placed on the ground. In addition, the soil was modeled with the Soft-Soil soil model, the hardening soil model for the infill part, and the sand piles with the Mohr-Coulomb soil model. According to the results , the settlement of the soil decreases by 52.8% for a single pile with an L/D ratio of 8.57. However, the best L/D ratio for triple piles was found to be 5.71. In this case, the settlement decreases by 52.8% compared to the pileless situation. Finally it was concluded that the model with the L/D ratio of 8.57 reduced settlement in the best and the most efficient way.


Author(s):  
D.J. Lim ◽  
W.C. Lane

The morphology and function of the vestibular sensory organs has been extensively studied during the last decade with the advent of electron microscopy and electrophysiology. The opening of the space age also accelerated active investigation in this area, since this organ is responsible for the sensation of balance and of linear, angular and gravitational acceleration.The vestibular sense organs are formed by the saccule, utricle and three ampullae of the semicircular canals. The maculae (sacculi and utriculi) have otolithic membranes on the top of the sensory epithelia. The otolithic membrane is formed by a layer of thick gelatin and sand-piles of calcium carbonate crystals (Fig.l).


Sign in / Sign up

Export Citation Format

Share Document